
Generating HPC memory architectures
with HLS: The two sides of the medal

Christian Pilato
Assistant Professor

christian.pilato@polimi.it

New York University – May 11, 2022

mailto:christian.pilato@polimi.it

©Christian Pilato, 2024 2

Assistant Professor (RTD-B - Ricercatore a Tempo Determinato Senior)

About Me

PhD Student
2008-2011

Research Assistant
2011-2013

Postdoc Research Scientist
2013-2016

Postdoc
Research Assistant

2016-2018
Assistant Prof.

2018-now

R&D
Internship
6 months

Visiting
Researcher

3 months

Visiting
Researcher

4 months

Visiting
Researcher

9 months

FP6 HARTES
FP7 SYNAPTIC

FP7 FASTER DARPA PERFECT
SRC CFAR

H2020 CERBERO
DARPA CRAFT

R&D Projects

Website: http://pilato.faculty.polimi.it

H2020
EVEREST

http://pilato.faculty.polimi.it/

©Christian Pilato, 2024 3

Big data applications with
heterogeneous data sources

FPGA-based architectures to
accelerate selected kernels

● App designers are not FPGA experts
● Hardware accelerators require many

optimizations
● Target nodes can have different

characteristics

Improve applications’ results

Increase quality of accelerators

Increase designers’ productivity
Compilation Runtime

How to optimize big data applications on FPGA-based architectures?

Unified hardware generation flow
(high-level synthesis)

Generation of variants

Dynamic adaptation to variants

Virtualization of resources

Multi-node support

The EVEREST Project

H2020 Project – 10 partners, 6 countries

Project Coordinator: Christoph Hagleitner, IBM Research Europe

Scientific Coordinator:

Budget: ~5M€

Start date: October 1, 2020

🙋

©Christian Pilato, 2024 4

Big data applications with
heterogeneous data sources

FPGA-based architectures to
accelerate selected kernels

SDK

What are the relevant requirements for data, languages and applications?

How to design data-driven policies for computation, communication, and storage?

How to create FPGA accelerators and associated binaries?

How to manage the system at runtime?

How to evaluate the results?

How to disseminate and exploit the results?

CPU-based infrastructure

Two FPGA-based clusters
+

Open-source framework to
support the optimization of

selected workflow tasks

Three use cases

EVEREST Approach

©Christian Pilato, 2024 5

EVEREST Partners
IBM Reseach Lab, Zurich (Switzerland)
Project administration, prototype of the target system
PI: Christoph Hagleitner

Politecnico di Milano (Italy)
Scientific coordination, high-level synthesis, flexible memory
managers, autotuning
PI: Christian Pilato

Università della Svizzera italiana (Switzerland)
Data security requirements and protection techniques
PI: Francesco Regazzoni

TU Dresden (Germany)
Domain-specific extensions, code optimizations and variants
PI: Jeronimo Castrillon

Centro Internazionale di Monitoraggio Ambientale (Italy)
Weather prediction models
PI: Antonio Parodi

IT4Innovations (Czech Republic)
Exploitation leaders, large HPC infrastructure, workflow
libraries
PI: Katerina Slaninova

Virtual Open Systems (France)
Virtualization techniques, runtime extensions to manage
heterogeneous resources
PI: Michele Paolino

Duferco Energia (Italy)
Application for prediction of renewable energies
PI: Lorenzo Pittaluga

Numtech (France)
Application for monitoring the air quality of industrial sites
PI: Fabien Brocheton

Sygic A/S (Slovakia)
Application for intelligent transportation in smart cities
PI: Radim Cmar

©EVEREST Consortium, 2020-2021

©Christian Pilato, 2024 6

Traffic modeling for intelligent transportation

EVEREST Use Cases
6

Weather prediction modelling
(WRF)

Renewable energy production prediction

Air-quality monitoring of industrial sites

Accelerated computationally-intensive kernels Machine-learning kernels+

★ Improve quality of the predictions

★ Accelerate kernels to execute more tests
★ Improve the response time of predictions

★ Improve the overall performance of traffic simulation

©Christian Pilato, 2024 7

Numerical simulations are becoming more and more popular for many
applications
• Computational Fluid Dynamics (CFD) is a representative application that requires

to solve partial differential equations
• Kernel is the Inverse Helmholtz operator (parametric with

respect to polynomial degree p) – “Helmholtz” for the friends

Final result is obtained by “small” contributions on independent data
• CFD kernel is composed of three high-level tensor operators (two contractions

and one Hadamard product) repeated millions of times – good for spatial parallelism
• Each operator requires p2 + 2 !	p3 (double) elements as input and produces p3

(double) elements – 21.74 KB + 10.40 KB per element when p = 11
• It requires additional six tensors (p3 elements) to store intermediate results –

additional 62.39 KB

The Case of Computational Fluid Dynamics

©Christian Pilato, 2024 8

EVEREST Target System

● Disaggregated FPGAs directly attached to the
network (64 FPGA instances)

● Low latency and high bandwidth system
● Separation between Shell and Role modules
● cFDK framework for system generation

● Cluster of PCIe-attached FPGAs (Alveo) with
HBM architecture (up to 460 GB/s per board)

● Xilinx Vitis framework for HLS and system
integration

● Support for the integration of custom HDL

● CPU-based infrastructure to execute end-to-end workflows, manage storage, and data transfers
● Extended to support the offloading of tasks to FPGA servers

cloudFPGA FPGA-Accelerated HPC Cluster

CPU Reference System

Exploit spatial parallelism

High memory bandwidth

Different nodes to better match applications

Seamless support for multiple nodes

Limited FPGA resources (esp. memories)

Data-intensive (memory-bound) applications

©Christian Pilato, 2024 9

EVEREST System Development Kit (SDK)

(and more...)

Processing State

0DFKLQH�/HDUQLQJ�)URQWHQG¬

7KH�2SHQ�&,0�&RPSLOHU¬

&,0�5XQWLPH�/LEUDU\

+DUGZDUH
&38

Collection of interoperable and open-source tools to create hardware/software
systems that can adapt to the target system, the application workflow, and the
data characteristics

Different input flows
starting from different input languages

Support for multiple target boards

📌 Compilation framework based on MLIR to unify the input languages
📌 High-level synthesis and hardware generation flow to automatically create optimized architectures
📌 Creation of hardware and software variants to match architecture features
📌 Use of state-of-the-art frameworks and commercial toolchains for FPGA synthesis

©Christian Pilato, 2024 10

We can identify common challenges to most of the FPGA-based HPC
architectures (e.g., network-attached cloudFPGA or bus-attached Alveo)

Challenge 1: Input languages and frameworks
• Application designers are usually not FPGA experts and may use high-level

framework that are not supported by current HLS tools – how to talk with them?

Challenge 2: CPU-Host Communication Cost
• FPGA logic requires the data on the board, but data transfers can be much more

expensive than kernel computation – execute more than one point?

Challenge 3: Read/Write Burst Transactions
• We need to determine the proper size of the transactions to get the maximum

performance – how to reorganize the data transfers and get the parameters?

Challenges for HPC Architectures (i)

©Christian Pilato, 2024 11

Challenge 4: Full Bandwidth Utilization
• AXI interfaces may be large (e.g., 256 bits on the Alveo) – how to leverage them?
• HBM architectures have many channels - how to parallelize data transfers?

Challenge 5: Data Allocation
• Data must be placed in memory to maximize its utilization but also to enable efficient

data transfers/computation – custom data layouts?

Challenge 6: Synthesis-Related Issues
• FPGA devices are large but still not sufficient for hosting many kernels – how to

trade-off optimizations and parallel instances?
• FPGA (or architectures) may be different – how to separate platform-agnostic and

platform-dependent parts?
• FPGA logic architectures are complex and may introduce performance degradation

– how to "guide" the synthesis process?

Challenges for HPC Architectures (ii)

©Christian Pilato, 2024 12

EVEREST Programming Environment
1. Compilation Environment: analyzes

application and creates all "variants"
based on architecture abstraction and
application/data requirements

• Exploring unified IR framework (e.g., MLIR)
• Integration of non-functional properties

with domain-specific extensions
• Hardware acceleration and High-level

synthesis (Bambu, Vivado HLS)

EVEREST Runtime Environment

Unified IR
framework

Implemented with high-level
abstractions, e.g., in MLIR

Middle-
end Opt-IR/

C-code

SW HW
Multi-variant and optimized IR with
SW/HW components (memory managers)

Meta-data/Info: HW
interfaces, variants info

Front-end

Backend
Implementation (SYCL, C, HDL,

meta-data, EVEREST APIs)

SW-optimization HW-optimization
HW-info

Standard
compilers

Bin/bit-
stream

Use case description, e.g., Short-time
prediction in traffic simulations

Application high-level
dataflow

ML-KernelSimulation
kernel

auto A = Matrix(m, n),
B = Matrix(m, n),
C = Matrix(m, n);

auto u = Tensor<3>
(n, n, n);

auto v = (A*B*C)(u);

Kernel DSL-spec, e.g., using
C++ syntax from [RINK19]

Possibility of using different
(ML) frameworks

Interoperability with
different HLS tools

Standard IR format and
exchange files

Novel domain-specific
extensions (format)

System and resource description (format)

©EVEREST Consortium, 2020-2021

©Christian Pilato, 2024 13

EVEREST Programming Environment

Autotuning API

Runtime API

Seamless execution when varying
the system configuration

(resources, nodes, data, etc.) Hiding communication latency
(e.g., prefetching)

How to collect system status and
expose it to the runtime?

2. Runtime Environment: implements
the selection of "variants" and the
hardware configuration based
on the system status

• Dynamic adaptation and autotuning
(mARGOt)

• Two-level runtime for (1) virtualization of
hardware resources regardless their distribution
and the low-level details of the platforms; (2) implement
functional decisions (VOSYS solutions, mARGOt, HyperLoom)

©EVEREST Consortium, 2020-2021

©Christian Pilato, 2024 14

What do we mean with memory architecture?

Additional issues:
• BRAM resources are limited

• Helmholtz operator requires >94 KB of local data
• If local storage is not optimized, the number of parallel kernels can be limited

• Application-specific details can be used to optimize the data transfers
• In Helmholtz, one of the tensors is constant over all elements – how to match

these details with platform characteristics?
• Better to transfer data for a “batch” of elements and then execute them in series

– how many? again, limited storage

Hardware HPC (Memory) Architectures

Every hardware module that is responsible to
provide data to the accelerator kernels

©Christian Pilato, 2024 15

Hardware Compilation Flow

Annotated C code
/ LLVM IR / MLIR

HLS
(Vi(s/Bambu)

Arch. Info

Mem. Gen.
(Mnemosyne)IP config.

System Integration
(Olympus)

DSL Src-to-Src (MLIR)
Compiler+DSE

Security/data
requirementsMem. Info

Security/data
requirements

Memory
access patternsIP requirements

Synthesis Tools

ML Framework

Possibility to target different
architectures

Memory architecture is
decoupled from kernel HLS

ch1

ch2

ch3

ch6

ch4

ch5

©Christian Pilato, 2024 16

VitisOlympus

CFDlang

CFDlang
Compiler

C Kernel

Array
Info

Sharing
Info

Explore

Minimal C++
CU Wrapper

HLS Resource &
Latency

Estimates

Optimize

Optimized
C++ CU

Host C++

System CFG

Mnemosyne v++

g++

Binary

0101
001101
010011

Bitstream

0101
001101
010011

Memory
Architecture

HDL

Port Info

Alveo FPGA

PCIe

Host CPU

Design Space Exploration

Platform
Specification

DSL-to-C C-to-System System-to-Bitstream Execution

From DSL to Bitstream – Focus on Memory

kernel_body

PLM

void kernel_body(double S[11][11], double D[11][11][11], double u[11][11][11],
double v[11][11][11],
double t[11][11][11], double r[11][11][11], double t1[11][11][11],
double t3[11][11][11], double t0[11][11][11], double t2[11][11][11])

kernel_body

ctrl S D u v

t r t1 t3 t0 t2CE0 A0 Q0

kernel_body

PLM
CE1 A1 D1 WE1......

Read port Write port

S

D

r

u

v t3

t1 t0

t2

t

PLM optimization
(local storage)

Optimization of
data movements

©Christian Pilato, 2024 17

High-Level Synthesis (HLS) to create the accelerator logic
• Definition of memory-related parameters

(e.g. number of process interfaces)

Generation of specialized PLMs
• Technology-related optimizations
• Possibility of system-level optimizations

across accelerators

PLM Customization for Heterogeneous SoCs

Accelerator Tile

DMA
Ctrl

Load

Compute 1

Store

Compute nke
rn
el
()

Private Local Memory

PLM ports

ping-pong buffer

read

write
circular buffer

1
2
3

45
6

…

1 2

in

out

Accelerator Logic

Memory LibraryPLM
Generation

High-Level
Synthesis

Data
Structures

High-Level
Description

(C/C++/SystemC)

©Christian Pilato, 2024 18

System-level methodology for PLM customization

PLM Customization

Data structures, access
patterns, …

HLS optimizations, number of
memory interfaces, …

Memory IPs, multi-bank
architectures, …

SystemC

SystemC + RTL

RTL

Designer

HLS tool Optimizations to reduce memory cost
Flexible memory controller to coordinate

memory accesses

Data Access
Requirements

Memory
LibraryPLM Generation

PLM architecture
(RTL)

Automatic Generation

Data
Structures

PLM Genera1on

Performance optimization: HLS defines how the accelerator logic accesses the
data structures (e.g., number of parallel accesses)

Cost optimization: PLM Customization defines the best PLM microarchitecture
to achieve the desired performance (e.g., number of banks, data allocation)

©Christian Pilato, 2024 19

Generally, we use one PLM unit (possibly composed of many banks) for
each data structure (array)

“Two data structures are compatible if they can be
allocated to the same PLM unit (memory IPs)”

A common case: accelerator kernels never executed at the same time
• Possible only at system-level, when integrating the components
• Optimizations of accelerator logic and memory subsystem are independent

Reuse What is not Used

Reuse the same memory IPs
for several data structures

©Christian Pilato, 2024 20

Accelerator(s) memory subsystem is defined during SoC integration
• Possibility for more optimizations

Optimization only at the System-Level

Logic
PLM

IP DESIGN

Logic
PLM

IP DESIGN

SOC INTEGRATION

Accelerator
Design (SystemC)

Algorithm
Design (C/C++)

Accelerator
Design (SystemC)

Algorithm
Design (C/C++)

Accelerator
Design (SystemC)

Algorithm
Design (C/C++)

Logic
IP DESIGN

Accelerator
Design (SystemC)

Algorithm
Design (C/C++)

SOC INTEGRATION

Memory Subsystem Design

Logic
IP DESIGN

Mem
Reqs

Mem
Reqs

Component-based Approach System-Level Approach

C. Pilato, L. Carloni, et al. "System-Level Optimization of Accelerator Local Memory for Heterogeneous Systems-on-Chip" TCAD’17

©Christian Pilato, 2024 21

PLM Optimization for Multiple Accelerators

HLS and DSE

Accelerator Design1
(SystemC)

Accelerator Logic1
(Verilog)

Memory
Requirements1 HLS and DSE

Accelerator Designk
(SystemC)

Accelerator Logick
(Verilog)

Memory
Requirementsk

Compatibility
Information Memory

IPs

Technology-unaware
Transformations1

Local Tech-aware
Transformations1

Memory
Subsystem
(Verilog)

Global Technology-aware Transformations

1 1

2

3

4

MNEMOSYNE Technology-unaware
Transformationsk

2

Local Tech-aware
Transformationsk

3

Generation of RTL Architecture
5

…	

©Christian Pilato, 2024 22

Let us assume to have the two following data structures that are never
alive at the same time
• A[1024] with data duplication over 4 parallel banks
• B[4096] with data distribution over 2 parallel banks

Address-Space Compatibility

A0 A1 A2 A3+B0 B1

Memory footprint: 4x1024x32
+ 2x2048x32 = 254,485.68 um2

A0 A1 A2 A3

A0 A2

A1 A3

Reused to store B by
putting banks in “series” to
virtually increase capacity

Memory footprint: 4x1024x32
= 140,426.46 um2 (-44.8%)

©Christian Pilato, 2024 23

A classical example is the ping-pong buffer (two 2048x16 arrays – A0/A1)
• When process P writes A0 (A1), it never writes A1 (A0)
• When process C reads from A0 (A1), it never reads from A1 (A0)

Memory-Interface Compatibility

if (ping)
A0[i] = …

else
A1[i] = …

if (ping)
… = f(A0[i])

else
… = f(A1[i])

μ-architectural optimizations

P CP C

memory controller

valid

ready
A0 A1

A0
(odd)

A1
(even)

A0 A1

A0
(even)

A1
(odd)

Memory footprint: 4x1024x32 = 140,426 um2

P CP C

memory controller

valid

ready
A0 A1

A0
(even)

A1
(even)

A0
(odd)

A1
(odd)

A0 A1

Merged in the same IP, but in
a different memory space

Memory footprint: 2x2048x32 = 114,059.2 um2

Area reduced by 18% without any
performance overhead!

©Christian Pilato, 2024 24

Graph to represent the possibilities for optimizing the data structures
• Each node represents a data structure to be allocated, annotated with its data

footprint (after data allocation)
• Each edge represents compatibility between the two data structures
• Can be automatically extracted from the MLIR-based compiler flow

• Variant exploration to achieve the "best solutions"

Memory Compatibility Graph (MCG)

A0
2x1024x32

A1
2x1024x32

B0
1x2048x32

a

ab

a) Address-space compatibility: the
data structures are compatible and
can use the same memory IPs

b) Memory-interface compatibility:
the ports are never accessed at the
same time and the data structures
can stay in the same memory IP

©Christian Pilato, 2024 25

“A clique is a subset of the vertices of the memory
compatibility graph such that every two vertices are

connected by an edge”

Clique Definition

A0
2x1024x32

A1
2x1024x32

B0
2048x32

a

ab

A0
2x1024x32

A1
2x1024x32

B0
2048x32

a

We need two distinct configurations!
{A0,B0} and {A1} or {A1,B0} and {A0}?

a

A clique represents a set of
data structures that can

share the same memory IPs

©Christian Pilato, 2024 26

Memory Cost Minimization

To determine how to partition the MCG such that the total memory cost is minimized

Clique Characterization

To determine the memory architecture of all cliques and their memory cost

Clique Enumeration

To define the list of admissible cliques in the MCG

How to Determine the Memory Subsystem

©Christian Pilato, 2024 27

A lightweight PLM controller is created for each compatibility set
(clique) based on the bank configuration
• Accelerator logic is not aware of the actual memory organization
• Array offsets need to be translated into proper memory addresses

PLM Controller Generation

Clique Configuration

B0 B1 B2 B3

PLM Controller

Custom logic with negligible overhead, especially when
the number of banks and their size is a power of two

0x0 0x1

0x0

0x1

0x0

0x1

ATU ATU ATU ATU

C
E
	

W
E
	

A
	

D
	

Q
	

C
E
	

W
E
	

A
	

D
	

Q
	

0x00
0x01
0x02
0x03

…

C
E
	

W
E
	

A
	

D
	

Q
	

C
E
	

W
E
	

A
	

D
	

Q
	

ATU ATU ATU ATU

C
E
	

W
E
	

A
	

D
	

C
E
	

A
	

Q
	

0x00
0x01
0x02
0x03

…

0x00
0x01
0x02
0x03

…

0x00
0x01
0x02
0x03

…

…	

1 0010 1

100101

©Christian Pilato, 2024 28

Bram
Ctrl

PLM0 ACC0

Ctrl

ctrl

Creation of Parallel Architectures

PLM0

Ctrl

PLMm-1

…
ACC0

ctrl

Batch

Bram
Ctrl

A[MSBs]

PLM0

Ctrl

PLMm-1

…

ACCk-1

ctrl

ACC0

ctrl

A[MSBs]

…

Bram
Ctrl

K. F. A. Friebel, S. Soldavini, G. Hempel, C. Pilato, J. Castrillon. "From Domain-Specific Languages to Memory-Optimized
Accelerators for Fluid Dynamics" HPCFPGA’21

©Christian Pilato, 2024 29

• Xilinx Zynq UltraScale+ MPSoC ZCU106 board
• CFD simulation of 50,000 elements

• Memory sharing allows us to fit more
kernels

Preliminary Evaluation

©Christian Pilato, 2024 30

CFDlang: DSL for representing the kernel

Moving to a system-level representation
• Simple example for a massively parallel architecture:

LOOP ~ KERNEL(S, D, u, v)
Possibility to decide the memory layout and configure DMA/prefetchers

based on the target architecture/platform

Next Step: System-Level DSL

©Christian Pilato, 2024 31

We are building an MLIR compilation flow for
automatic memory specialization:
• MLIR Input – DSL description of the system

functionality
• Data Organization – Determine which data resides off

chip (also based on user/compiler annotations)
• Layout – Reorganize communication to exploit local

memories and perform efficient parallel computation
• Communication – Configure prefetcher to hide

transfer latency
• Local Partitioning – Determine multi-bank PLM

architecture (Mnemosyne)
• HLS – Generate computation part (interfacing with

existing HLS tools, e.g., open-source Vitis HLS
frontend)

• HDL Output – Automated code generation and
system-level integration based on the target platform

Next Step: Let’s Put Memory First

S. Soldavini and C. Pilato. "Compiler Infrastructure for Specializing
Domain-Specific Memory Templates" LATTE’21

External Memory

Kernel

Logic to Resolve Addr
and Reduce Delay

Cache

DMA

Prefetcher

Multi-Channel
Controller

DRAM

HBM

Remote

PLM PLM

Multi port
(based on access

patterns)

Data Org Layout Communication
Local

Partitioning Kernel Gen

System-Level
Description

HDL

Intelligent Memory Logic
(Latency Insensitive)

Direct Access Memory
(Fixed Latency)

©Christian Pilato, 2024 32

We are developing a complete hardware architecture generation flow
based on MLIR description of the system functionality

Platform-specific description
• HBM-based Xilinx Alveo
• IBM CloudFPGA
• …

Host code generation
• Based on platform libraries

for the specific target

Olympus – Automated System-Level Integration

Possibility to use several HLS
tools/HDL generators

©Christian Pilato, 2024 33

Determines the system-level architectures based on:
• Algorithm parallelism
• Characteristics of the target platform(s)
• Interfaces of the modules (HLS tools)

Produces
• Synthesizable C++ code that includes:

• Accelerators and PLM generated with HLS
• Communication modules to match interfaces

• Standard AXI interfaces to the system (either cloudFPGA SHELL or HBM channels)
• May include “intelligent” policies to coordinate (or protect) data transfers

• System configuration file to create the overall architecture
• Support for multiple computing units executing in parallel
• Interfacing with Xilinx HLS and synthesis tools

Olympus – System generation flow

©Christian Pilato, 2024 34

Automatic integration of memory optimizations for high-performance
data transfers, such as:
• Double buffering to hide latency of host-FPGA data transfers
• Bus optimization (and data interleaving) for maximizing bandwidth (e.g., 256-bit

AXI channels) – algorithms for efficient data layout on the bus
• Dataflow execution model to enable kernel pipelining – automatic (pre-HLS) code

transformations

From MLIR to System Architecture

Double buffering Bus optimization Dataflow

©Christian Pilato, 2024 35

Results on HBM FPGA

Best performance: 103 GOPS
(118x faster than our "starting point")

Results are 6x better than Intel ones
[optimized, vectorized implementation]
(~25x more energy efficient)

Possibility of integrating custom
data formats and configure memories
and data transfers accordingly S. Soldavini, K. A. Friebel, M. Tibaldi, G. Hempel, J. Castrillón, C. Pilato:. "Automatic Creation of High-Bandwidth

Memory Architectures from Domain-Specific Languages: The Case of Computational Fluid Dynamics" arXiv’22

©Christian Pilato, 2024 36

Data management optimizations are becoming the key for the creation
of efficient FPGA architectures (… more than pure kernel optimizations)

HLS is now used not only to create accelerator kernels but also to
generate the system-level architecture
• Portable solutions across multiple target platforms

Novel HBM architectures offer high bandwidth (that’s why they are
called high-bandwidth memory architectures… J) but their design is
complex:
• Necessary to match application requirements and technology characteristics
• We propose an MLIR-based compilation flow that directly interfaces with

commercial HLS tools

Conclusions

Thank you!

Christian Pilato, christian.pilato@polimi.it

This project has received funding from the European
Union’s Horizon 2020 research and innovation
programme under grant agreement No 957269

Work done in collaboration with Stephanie Soldavini (Politecnico di Milano),
Mattia Tibaldi (Politecnico di Milano), Jeronimo Castrillon (TU Dresden), Karl F. A.

Friebel (TU Dresden), and Gerald Hempel (TU Dresden)

mailto:christian.pilato@polimi.it

