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Big data applications with 
heterogeneous data sources

FPGA-based architectures to 
accelerate selected kernels

● App designers are not FPGA experts
● Hardware accelerators require many 

optimizations
● Target nodes can have different 

characteristics

Improve applications’ results

Increase quality of accelerators

Increase designers’ productivity
Compilation Runtime

How to optimize big data applications on FPGA-based architectures?

Unified hardware generation flow
(high-level synthesis)

Generation of variants

Dynamic adaptation to variants

Virtualization of resources

Multi-node support

The EVEREST Project

H2020 Project – 10 partners, 6 countries

Project Coordinator: Christoph Hagleitner, IBM Research Europe

Scientific Coordinator:

Budget: ~5M€

Start date: October 1, 2020

🙋
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Big data applications with 
heterogeneous data sources

FPGA-based architectures to 
accelerate selected kernels

SDK

What are the relevant requirements for data, languages and applications?

How to design data-driven policies for computation, communication, and storage?

How to create FPGA accelerators and associated binaries?

How to manage the system at runtime?

How to evaluate the results?

How to disseminate and exploit the results?

CPU-based infrastructure

Two FPGA-based clusters
+

Open-source framework to 
support the optimization of 

selected workflow tasks

Three use cases

EVEREST Approach
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EVEREST Partners
IBM Reseach Lab, Zurich (Switzerland)
Project administration, prototype of the target system
PI: Christoph Hagleitner

Politecnico di Milano (Italy)
Scientific coordination, high-level synthesis, flexible memory 
managers, autotuning
PI: Christian Pilato

Università della Svizzera italiana (Switzerland)
Data security requirements and protection techniques
PI: Francesco Regazzoni

TU Dresden (Germany)
Domain-specific extensions, code optimizations and variants
PI: Jeronimo Castrillon 

Centro Internazionale di Monitoraggio Ambientale (Italy)
Weather prediction models
PI: Antonio Parodi

IT4Innovations (Czech Republic)
Exploitation leaders, large HPC infrastructure, workflow 
libraries
PI: Katerina Slaninova

Virtual Open Systems (France)
Virtualization techniques, runtime extensions to manage
heterogeneous resources
PI: Michele Paolino

Duferco Energia (Italy)
Application for prediction of renewable energies
PI: Lorenzo Pittaluga

Numtech (France)
Application for monitoring the air quality of industrial sites
PI: Fabien Brocheton

Sygic A/S (Slovakia)
Application for intelligent transportation in smart cities
PI: Radim Cmar

©EVEREST Consortium, 2020-2021
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Traffic modeling for intelligent transportation

EVEREST Use Cases
6

Weather prediction modelling 
(WRF)

Renewable energy production prediction

Air-quality monitoring of industrial sites

Accelerated computationally-intensive kernels Machine-learning kernels+

★ Improve quality of the predictions

★ Accelerate kernels to execute more tests
★ Improve the response time of predictions

★ Improve the overall performance of traffic simulation
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Numerical simulations are becoming more and more popular for many 
applications
• Computational Fluid Dynamics (CFD) is a representative application that requires 

to solve partial differential equations
• Kernel is the Inverse Helmholtz operator (parametric with 

respect to polynomial degree p) – “Helmholtz” for the friends

Final result is obtained by “small” contributions on independent data
• CFD kernel is composed of three high-level tensor operators (two contractions 

and one Hadamard product) repeated millions of times – good for spatial parallelism
• Each operator requires p2 + 2 !	p3 (double) elements as input and produces p3

(double) elements – 21.74 KB + 10.40 KB per element when p = 11
• It requires additional six tensors (p3 elements) to store intermediate results –

additional 62.39 KB

The Case of Computational Fluid Dynamics
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EVEREST Target System

● Disaggregated FPGAs directly attached to the 
network (64 FPGA instances)

● Low latency and high bandwidth system
● Separation between Shell and Role modules
● cFDK framework for system generation

● Cluster of PCIe-attached FPGAs (Alveo) with 
HBM architecture (up to 460 GB/s per board)

● Xilinx Vitis framework for HLS and system 
integration

● Support for the integration of custom HDL

● CPU-based infrastructure to execute end-to-end workflows, manage storage, and data transfers 
● Extended to support the offloading of tasks to FPGA servers

cloudFPGA FPGA-Accelerated HPC Cluster  

CPU Reference System  

Exploit spatial parallelism

High memory bandwidth

Different nodes to better match applications

Seamless support for multiple nodes

Limited FPGA resources (esp. memories)

Data-intensive (memory-bound) applications
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EVEREST System Development Kit (SDK)

(and more...)

Processing State

0DFKLQH�/HDUQLQJ�)URQWHQG¬
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&38

Collection of interoperable and open-source tools to create hardware/software 
systems that can adapt to the target system, the application workflow, and the 
data characteristics

Different input flows 
starting from different input languages

Support for multiple target boards

📌 Compilation framework based on MLIR to unify the input languages
📌 High-level synthesis and hardware generation flow to automatically create optimized architectures 
📌 Creation of hardware and software variants to match architecture features
📌 Use of state-of-the-art frameworks and commercial toolchains for FPGA synthesis



©Christian Pilato, 2024 10

We can identify common challenges to most of the FPGA-based HPC 
architectures (e.g., network-attached cloudFPGA or bus-attached Alveo)

Challenge 1: Input languages and frameworks
• Application designers are usually not FPGA experts and may use high-level 

framework that are not supported by current HLS tools – how to talk with them?

Challenge 2: CPU-Host Communication Cost 
• FPGA logic requires the data on the board, but data transfers can be much more 

expensive than kernel computation – execute more than one point?

Challenge 3: Read/Write Burst Transactions 
• We need to determine the proper size of the transactions to get the maximum 

performance – how to reorganize the data transfers and get the parameters?

Challenges for HPC Architectures (i)
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Challenge 4: Full Bandwidth Utilization 
• AXI interfaces may be large (e.g., 256 bits on the Alveo) – how to leverage them?
• HBM architectures have many channels - how to parallelize data transfers?

Challenge 5: Data Allocation 
• Data must be placed in memory to maximize its utilization but also to enable efficient 

data transfers/computation – custom data layouts?

Challenge 6: Synthesis-Related Issues 
• FPGA devices are large but still not sufficient for hosting many kernels – how to 

trade-off optimizations and parallel instances?
• FPGA (or architectures) may be different – how to separate platform-agnostic and 

platform-dependent parts?
• FPGA logic architectures are complex and may introduce performance degradation 

– how to "guide" the synthesis process?

Challenges for HPC Architectures (ii)
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EVEREST Programming Environment
1. Compilation Environment: analyzes 

application and creates all "variants" 
based on architecture abstraction and 
application/data requirements

• Exploring unified IR framework (e.g., MLIR)
• Integration of non-functional properties 

with domain-specific extensions
• Hardware acceleration and High-level 

synthesis (Bambu, Vivado HLS)

EVEREST Runtime Environment

Unified IR 
framework

Implemented with high-level 
abstractions, e.g., in MLIR

Middle-
end Opt-IR/ 

C-code

SW HW
Multi-variant and optimized IR with 
SW/HW components (memory managers)

Meta-data/Info: HW 
interfaces, variants info

Front-end

Backend
Implementation (SYCL, C, HDL, 

meta-data, EVEREST APIs)

SW-optimization HW-optimization
HW-info

Standard 
compilers

Bin/bit-
stream

Use case description, e.g., Short-time 
prediction in traffic simulations

Application high-level 
dataflow

ML-KernelSimulation 
kernel

auto A = Matrix(m, n), 
B = Matrix(m, n), 
C = Matrix(m, n); 

auto u = Tensor<3>
(n, n, n); 

auto v = (A*B*C)(u); 

Kernel DSL-spec, e.g., using 
C++ syntax from [RINK19]

Possibility of using different 
(ML) frameworks

Interoperability with 
different HLS tools

Standard IR format and 
exchange files

Novel domain-specific 
extensions (format)

System and resource description (format)

©EVEREST Consortium, 2020-2021



©Christian Pilato, 2024 13

EVEREST Programming Environment

Autotuning API

Runtime API

Seamless execution when varying 
the system configuration 

(resources, nodes, data, etc.) Hiding communication latency 
(e.g., prefetching)

How to collect system status and 
expose it to the runtime?

2. Runtime Environment: implements
the selection of "variants" and the
hardware configuration based 
on the system status 

• Dynamic adaptation and autotuning 
(mARGOt)

• Two-level runtime for (1) virtualization of 
hardware resources regardless their distribution 
and the low-level details of the platforms; (2) implement 
functional decisions (VOSYS solutions, mARGOt, HyperLoom) 

©EVEREST Consortium, 2020-2021
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What do we mean with memory architecture?

Additional issues:
• BRAM resources are limited

• Helmholtz operator requires >94 KB of local data
• If local storage is not optimized, the number of parallel kernels can be limited 

• Application-specific details can be used to optimize the data transfers
• In Helmholtz, one of the tensors is constant over all elements – how to match 

these details with platform characteristics?
• Better to transfer data for a “batch” of elements and then execute them in series 

– how many? again, limited storage

Hardware HPC (Memory) Architectures

Every hardware module that is responsible to 
provide data to the accelerator kernels
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Hardware Compilation Flow

Annotated C code 
/ LLVM IR / MLIR

HLS 
(Vi(s/Bambu)

Arch. Info

Mem. Gen. 
(Mnemosyne)IP config.

System Integration
(Olympus)

DSL Src-to-Src (MLIR)
Compiler+DSE

Security/data 
requirementsMem. Info

Security/data 
requirements

Memory 
access patternsIP requirements

Synthesis Tools

ML Framework

Possibility to target different 
architectures

Memory architecture is 
decoupled from kernel HLS

ch1

ch2

ch3

ch6

ch4

ch5
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VitisOlympus

CFDlang

CFDlang 
Compiler

C Kernel

Array
Info

Sharing 
Info

Explore

Minimal C++  
CU Wrapper

HLS Resource &  
Latency  

Estimates

Optimize

Optimized  
C++ CU

Host C++

System CFG

Mnemosyne v++

g++

Binary

0101 
001101 
010011

Bitstream

0101 
001101 
010011

Memory
Architecture

HDL

Port Info

Alveo FPGA

PCIe

Host CPU

Design Space Exploration

Platform  
Specification

DSL-to-C C-to-System System-to-Bitstream Execution

From DSL to Bitstream – Focus on Memory

kernel_body

PLM

void kernel_body(double S[11][11], double D[11][11][11], double u[11][11][11], 
double v[11][11][11], 
double t[11][11][11], double r[11][11][11], double t1[11][11][11], 
double t3[11][11][11], double t0[11][11][11], double t2[11][11][11])

kernel_body

ctrl S D u v

t r t1 t3 t0 t2CE0 A0 Q0

kernel_body

PLM
CE1 A1 D1 WE1......

Read port Write port

S

D

r

u

v t3

t1 t0

t2

t

PLM optimization 
(local storage)

Optimization of 
data movements
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High-Level Synthesis (HLS) to create the accelerator logic
• Definition of memory-related parameters 

(e.g. number of process interfaces)

Generation of specialized PLMs
• Technology-related optimizations 
• Possibility of system-level optimizations 

across accelerators

PLM Customization for Heterogeneous SoCs

Accelerator Tile

DMA
Ctrl

Load

Compute 1

Store

Compute nke
rn
el
()

Private Local Memory

PLM ports

ping-pong buffer

read

write
circular buffer

1
2
3

45
6

…

1 2

in

out

Accelerator Logic

Memory LibraryPLM 
Generation

High-Level 
Synthesis

Data 
Structures

High-Level 
Description 

(C/C++/SystemC)
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System-level methodology for PLM customization

PLM Customization

Data structures, access 
patterns, …

HLS optimizations, number of 
memory interfaces, …

Memory IPs, multi-bank 
architectures, …

SystemC

SystemC + RTL

RTL

Designer

HLS tool Optimizations to reduce memory cost
Flexible memory controller to coordinate 

memory accesses

Data Access 
Requirements

Memory
LibraryPLM Generation

PLM architecture 
(RTL)

Automatic Generation

Data 
Structures

PLM Genera1on

Performance optimization: HLS defines how the accelerator logic accesses the 
data structures (e.g., number of parallel accesses)

Cost optimization: PLM Customization defines the best PLM microarchitecture 
to achieve the desired performance (e.g., number of banks, data allocation)
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Generally, we use one PLM unit (possibly composed of many banks) for 
each data structure (array)

“Two data structures are compatible if they can be 
allocated to the same PLM unit (memory IPs)”

A common case: accelerator kernels never executed at the same time
• Possible only at system-level, when integrating the components
• Optimizations of accelerator logic and memory subsystem are independent

Reuse What is not Used

Reuse the same memory IPs 
for several data structures
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Accelerator(s) memory subsystem is defined during SoC integration
• Possibility for more optimizations

Optimization only at the System-Level

Logic
PLM

IP DESIGN

Logic
PLM

IP DESIGN

SOC INTEGRATION

Accelerator 
Design (SystemC)

Algorithm 
Design (C/C++)

Accelerator 
Design (SystemC)

Algorithm 
Design (C/C++)

Accelerator 
Design (SystemC)

Algorithm 
Design (C/C++)

Logic
IP DESIGN

Accelerator 
Design (SystemC)

Algorithm 
Design (C/C++)

SOC INTEGRATION

Memory Subsystem Design

Logic
IP DESIGN

Mem 
Reqs

Mem 
Reqs

Component-based Approach System-Level Approach

C. Pilato, L. Carloni, et al. "System-Level Optimization of Accelerator Local Memory for Heterogeneous Systems-on-Chip" TCAD’17
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PLM Optimization for Multiple Accelerators

HLS and DSE 

Accelerator Design1 
(SystemC) 

Accelerator Logic1 
(Verilog) 

Memory 
Requirements1 HLS and DSE 

Accelerator Designk 
(SystemC) 

Accelerator Logick 
(Verilog) 

Memory 
Requirementsk 

       

Compatibility 
Information Memory 

IPs 

Technology-unaware 
Transformations1 

Local Tech-aware 
Transformations1 

Memory 
Subsystem 
(Verilog) 

Global Technology-aware Transformations 

1 1 

2 

3 

4 

MNEMOSYNE Technology-unaware 
Transformationsk 

2 

Local Tech-aware 
Transformationsk 

3 

Generation of RTL Architecture 
5 

…	
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Let us assume to have the two following data structures that are never 
alive at the same time
• A[1024] with data duplication over 4 parallel banks
• B[4096] with data distribution over 2 parallel banks

Address-Space Compatibility

A0 A1 A2 A3+B0 B1

Memory footprint: 4x1024x32 
+ 2x2048x32 = 254,485.68 um2

A0 A1 A2 A3

A0 A2

A1 A3

Reused to store B by 
putting banks in “series” to 
virtually increase capacity

Memory footprint: 4x1024x32 
= 140,426.46 um2 (-44.8%)
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A classical example is the ping-pong buffer (two 2048x16 arrays – A0/A1)
• When process P writes A0 (A1), it never writes A1 (A0)
• When process C reads from A0 (A1), it never reads from A1 (A0)

Memory-Interface Compatibility

if (ping)
A0[i] = …

else
A1[i] = …

if (ping)
… = f(A0[i])

else
… = f(A1[i])

μ-architectural optimizations

P CP C

memory controller

valid

ready
A0 A1

A0
(odd)

A1
(even)

A0 A1

A0
(even)

A1
(odd)

Memory footprint: 4x1024x32 = 140,426 um2

P CP C

memory controller

valid

ready
A0 A1

A0
(even)

A1
(even)

A0
(odd)

A1
(odd)

A0 A1

Merged in the same IP, but in 
a different memory space

Memory footprint: 2x2048x32 = 114,059.2 um2

Area reduced by 18% without any 
performance overhead!
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Graph to represent the possibilities for optimizing the data structures
• Each node represents a data structure to be allocated, annotated with its data 

footprint (after data allocation)
• Each edge represents compatibility between the two data structures 
• Can be automatically extracted from the MLIR-based compiler flow

• Variant exploration to achieve the "best solutions"

Memory Compatibility Graph (MCG)

A0
2x1024x32

A1
2x1024x32

B0
1x2048x32

a

ab

a) Address-space compatibility: the 
data structures are compatible and 
can use the same memory IPs

b) Memory-interface compatibility: 
the ports are never accessed at the 
same time and the data structures 
can stay in the same memory IP
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“A clique is a subset of the vertices of the memory 
compatibility graph such that every two vertices are 

connected by an edge”

Clique Definition

A0
2x1024x32

A1
2x1024x32

B0
2048x32

a

ab

A0
2x1024x32

A1
2x1024x32

B0
2048x32

a

We need two distinct configurations!
{A0,B0} and {A1} or {A1,B0} and {A0}? 

a

A clique represents a set of 
data structures that can 

share the same memory IPs
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Memory Cost Minimization

To determine how to partition the MCG such that the total memory cost is minimized

Clique Characterization

To determine the memory architecture of all cliques and their memory cost

Clique Enumeration

To define the list of admissible cliques in the MCG

How to Determine the Memory Subsystem
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A lightweight PLM controller is created for each compatibility set 
(clique) based on the bank configuration
• Accelerator logic is not aware of the actual memory organization
• Array offsets need to be translated into proper memory addresses

PLM Controller Generation

Clique Configuration

B0 B1 B2 B3

PLM Controller

Custom logic with negligible overhead, especially when 
the number of banks and their size is a power of two

0x0 0x1
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Bram
Ctrl

PLM0 ACC0

Ctrl

ctrl

Creation of Parallel Architectures

PLM0

Ctrl

PLMm-1

…
ACC0

ctrl

Batch

Bram
Ctrl

A[MSBs]

PLM0

Ctrl

PLMm-1

…

ACCk-1

ctrl

ACC0

ctrl

A[MSBs]

…

Bram
Ctrl

K. F. A. Friebel, S. Soldavini, G. Hempel, C. Pilato, J. Castrillon. "From Domain-Specific Languages to Memory-Optimized 
Accelerators for Fluid Dynamics" HPCFPGA’21
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• Xilinx Zynq UltraScale+ MPSoC ZCU106 board
• CFD simulation of 50,000 elements

• Memory sharing allows us to fit more
kernels

Preliminary Evaluation
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CFDlang: DSL for representing the kernel

Moving to a system-level representation
• Simple example for a massively parallel architecture:

LOOP ~ KERNEL(S, D, u, v)
Possibility to decide the memory layout and configure DMA/prefetchers 

based on the target architecture/platform

Next Step: System-Level DSL
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We are building an MLIR compilation flow for 
automatic memory specialization:
• MLIR Input – DSL description of the system 

functionality
• Data Organization – Determine which data resides off 

chip (also based on user/compiler annotations)
• Layout – Reorganize communication to exploit local 

memories and perform efficient parallel computation
• Communication – Configure prefetcher to hide 

transfer latency
• Local Partitioning – Determine multi-bank PLM 

architecture (Mnemosyne)
• HLS – Generate computation part (interfacing with 

existing HLS tools, e.g., open-source Vitis HLS 
frontend)

• HDL Output – Automated code generation and 
system-level integration based on the target platform

Next Step: Let’s Put Memory First

S. Soldavini and C. Pilato. "Compiler Infrastructure for Specializing 
Domain-Specific Memory Templates" LATTE’21

External Memory

Kernel

Logic to Resolve Addr
and Reduce Delay

Cache

DMA

Prefetcher

Multi-Channel
Controller

DRAM

HBM

Remote

PLM PLM

Multi port
(based on access

patterns)

Data Org Layout Communication
Local

Partitioning Kernel Gen

System-Level
Description

HDL

Intelligent Memory Logic
(Latency Insensitive)

Direct Access Memory
(Fixed Latency)
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We are developing a complete hardware architecture generation flow 
based on MLIR description of the system functionality

Platform-specific description
• HBM-based Xilinx Alveo
• IBM CloudFPGA
• …

Host code generation
• Based on platform libraries

for the specific target

Olympus – Automated System-Level Integration

Possibility to use several HLS 
tools/HDL generators
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Determines the system-level architectures based on:
• Algorithm parallelism
• Characteristics of the target platform(s)
• Interfaces of the modules (HLS tools)

Produces
• Synthesizable C++ code that includes:

• Accelerators and PLM generated with HLS
• Communication modules to match interfaces

• Standard AXI interfaces to the system (either cloudFPGA SHELL or HBM channels)
• May include “intelligent” policies to coordinate (or protect) data transfers

• System configuration file to create the overall architecture
• Support for multiple computing units executing in parallel
• Interfacing with Xilinx HLS and synthesis tools

Olympus – System generation flow
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Automatic integration of memory optimizations for high-performance 
data transfers, such as:
• Double buffering to hide latency of host-FPGA data transfers
• Bus optimization (and data interleaving) for maximizing bandwidth (e.g., 256-bit 

AXI channels) – algorithms for efficient data layout on the bus
• Dataflow execution model to enable kernel pipelining – automatic (pre-HLS) code 

transformations

From MLIR to System Architecture

Double buffering Bus optimization Dataflow
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Results on HBM FPGA

Best performance: 103 GOPS
(118x faster than our "starting point")

Results are 6x better than Intel ones 
[optimized, vectorized implementation] 
(~25x more energy efficient)

Possibility of integrating custom 
data formats and configure memories 
and data transfers accordingly S. Soldavini, K. A. Friebel, M. Tibaldi, G. Hempel, J. Castrillón, C. Pilato:. "Automatic Creation of High-Bandwidth 

Memory Architectures from Domain-Specific Languages: The Case of Computational Fluid Dynamics" arXiv’22
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Data management optimizations are becoming the key for the creation 
of efficient FPGA architectures (… more than pure kernel optimizations)

HLS is now used not only to create accelerator kernels but also to 
generate the system-level architecture
• Portable solutions across multiple target platforms

Novel HBM architectures offer high bandwidth (that’s why they are 
called high-bandwidth memory architectures… J) but their design is 
complex:
• Necessary to match application requirements and technology characteristics
• We propose an MLIR-based compilation flow that directly interfaces with

commercial HLS tools

Conclusions
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