

Equation Solvers over GF(2)

Subhadeep Banik

University of Lugano

Security Privacy and Applied Cryptographic Engineering,

Indian Institute of Technology, Roorkee

14th December 2023

Sustainable Cryptanalysis

• The idea of making dedicated machines to attack ciphers is not new.

Source: Wikipedia

Sustainable Cryptanalysis

• Why should we care to make circuits ?

Source: Wikipedia

In Software

- Most general purpose CPU's have the following structure
 - [A] A processing unit having logic gates and registers
 - [B] A control unit having an instruction register and a program counter
 - [C] Primary memory that stores data and instructions
 - [D] Secondary memory, usually an external mass storage.
- Any computational step of the algorithm
 - → First broken down into a sequence of instructions
 - \rightarrow Resides in the control unit.
 - → Fetches data from the primary/secondary memory,
 - \rightarrow Processed in the processing unit.

In Software

- Dedicated Circuit
 - [A] Collection of logic elements
 - [B] Assembled specifically for the given task
 - [C] Thus executes them with much greater efficiency.
 - [D] Faster and more energy efficient.
- Gaussian Elimination of a 656×656 matrix
 - → Dedicated circuit [SMITH, Bogdanov et al. 07]
 - \rightarrow Requires 86 ms.
 - \rightarrow On a Linux 800 MHz PIII PC would take around 40 minutes,
 - ightarrow We can execute computationally heavy tasks on such circuits.

Introduction: Solving an Equation System

- Given m eqns P_1, P_2, \ldots, P_m of n variables over GF(2) of max degree d.
 - \rightarrow Usually m=n, sometimes m>n
 - \rightarrow Each equation is a multivariate polynomial over GF(2)
 - \rightarrow The algebraic degree d is usually small.
 - \rightarrow Task: find a common root: $r \in \{0,1\}^n$ such that $P_i(r) = 0, \ \forall \ i$.
- Problem arises in many cryptographic contexts.
 - → Block ciphers with low multiplicative complexities like LowMC
 - \rightarrow Given single pt/ct: solving low degree polynomials.
 - \rightarrow Signature schemes like UOV.
 - \rightarrow Cryptanalysis: solving quadratic polynomials over GF(2).

1.5.2024

Linear Systems

If Equations are Linear (d = 1)

LSE (m equations, n variables)

Typical LSE

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

- Equivalently $A\vec{x} = \vec{b}$
- Linear equations can be Solved by Gaussian Elimination (GE) efficiently.
- GE takes n^3 operations in the worst case.
- ullet Given a linear system of form $Aec{x}=ec{b}$
 - \rightarrow Convert to equivalent system $U \cdot \vec{x} = \vec{b'}$, where U is upper-triangular.
 - \rightarrow Done by applying elementary row operations.

MR4I

1.5.2024

Popular in SW

- used in computer algebra packages like SAGE.
- It is interesting to see how far this cam be applied in HW

Gaussian Elimination


```
Gaussian_Elimination(A, n)
Input: Matrix A \in \{0,1\}^{n \times n}: Input matrix
for each column k = 1 \rightarrow n do
    s := k;
    while a_{sk} = 0 do
    s := s + 1:
    end
    Swap row \vec{a_k} with row \vec{a_s}:
    for each row i = 1 \rightarrow n do
        if i \neq k and a_{ik} = 1 then
        a_{ij} := a_{ij} \oplus a_{kj}
        end
    end
end
```


• GE requires 2 operations: row addition/row swap

1	0	0	1	0	1	1	0
0	0	0	1	0	1	0	1
1	1	0	0	1	0	1	0
0	0	1	1	0	1	0	1
1	1	0	0	0	1	0	1
0	0	1	1	0	0	0	1
0	1	0	1	1	0	1	1
1	0	0	0	1	1	0	1

 Pivot is the top-left element of unprocessed rows.

• GE requires 2 operations: row addition/row swap

• Column sweep once pivot is fixed.

• GE requires 2 operations: row addition/row swap

• Pivot can not be zero. So swap with next available row which is **unprocessed**.

• GE requires 2 operations: row addition/row swap

• Swap is done. Ready for next row operation.

• GE requires 2 operations: row addition/row swap

• Second column is cleared.

Circuit Issues

1.5.2024

• Assume each element is stored in a single flip-flop.

1	0	0	1	0	1	1	0
0	0	0	1	0	1	0	1
0	1	0	1	1	1	0	0
0	0	1	1	0	1	0	1
0	1	0	1	0	0	1	1
0	0	1	1	0	0	0	1
0	1	0	1	1	0	1	1
0	0	0	1	1	0	1	1

- Pivot is ever changing. How to keep track of it ?
- Can not swap with already processed row...
- How to select next row for swap?

- Initially both circuit and state are same
- Two additional registers Vec1 and Vec2
- To keep track of control flow.

1	0	0	1	0	1	1	0
0	0	0	1	0	1	0	1
1	1	0	0	1	0	1	0
0	0	1	1	0	1	0	1
1	1	0	0	0	1	0	1
0	0	1	1	0	0	0	1
0	1	0	1	1	0	1	1
1	0	0	0	1	1	0	1

	1	0	0	1	0	1	1	0
ı	0	0	0	1	0	1	0	1
	1	1		0	1	0	1	0
	0	0	1	1	0	1	0	1
	1	1	0	0	0	1	0	1
	0	0	1	1	0	0	0	1
	0	1	0	1	1	0	1	1
7	1	0	0	0	1	1	0	1

Pivot

Pivot

Vec1 Vec2

- Diagonal flow brings a_{11} to bottom-left (next pivot shifts to (1,1)!!!)
- The parts in red, blue and orange move accordingly.
- Orange part moves without xor operation/ purple is all zero

Subhadeep Banik Equation Solvers over GF(2)

- Xor rule: New $a_{ij} = a_{i+1, j+1} \oplus a_{1, j+1} \cdot a_{i+1, 1}$
- Vec1=Vec1 $\ll 1 \parallel 1$ (last row is processed).
- Vec2=Vec2 ≪ 1 (last row is current row).

Pivot

Pivot

Equation Solvers over GF(2)

SMITH - Xor rule

Row operations

$$\begin{bmatrix} 1 & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \rightarrow \begin{bmatrix} a_{22} \oplus (a_{12} \cdot a_{21}) & a_{23} \oplus (a_{13} \cdot a_{21}) & \cdots & 0 \\ a_{32} \oplus (a_{12} \cdot a_{31}) & a_{33} \oplus (a_{13} \cdot a_{31}) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n2} \oplus (a_{12} \cdot a_{n1}) & a_{n3} \oplus (a_{13} \cdot a_{n1}) & \cdots & 0 \\ a_{12} & a_{13} & \cdots & 1 \end{bmatrix}$$

- ullet Pivot is already at (1,1) and zero o Now row swaps are required
- Instead of row swap, we circularly rotate unprocessed rows till $a_{11} \neq 0$.
- Need to do same operation to the \vec{b} in $A\vec{x} = \vec{b}$.

21 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

- After one swap pivot is already non-zero
- Ready for next row operation.
- Again we do diagonal movement on unprocessed rows.

Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

1.5.2024

- After row operation: last 2 cols are cleared.
- Bottom left corner becomes identity.
- Stops when Vec1 is all one.

Subhadeep Banik Equation Solvers over GF(2)

SMITH - Swap rule

Row Swap

SMITH - RUNTIME

- What is the average Runtime for $n \times n$ matrix???
- At least n row xors are required.
- Additional time depends on number of row swaps.

Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

SMITH - RUNTIME

1 5 2024

- If Pivot == 1 $(p = \frac{1}{2})$, no swaps are required (zero additional time)
- After one circular rotate if pivot==1, no further swaps are necessary.
- Thus one additional cycle in this case $(p = \frac{1}{4})$.

Subhadeep Banik Equation Solvers over GF(2)

SMITH - RUNTIME

- If Pivot == 1 after t rotations $(p=\frac{1}{2^{t+1}})$, t additional time. $E=0\cdot\frac{1}{2}+1\cdot\frac{1}{4}+2\cdot\frac{1}{8}+\cdots+t\cdot\frac{1}{2^{t+1}}+\cdots\approx 1$.
- Every row xor needs one extra cycle on average $\rightarrow 2n$ cycles.

Subhadeep Banik

1 5 2024

SMITH - Each flip-flop

- ullet Constant Depth circuit: enables low critical path even as $n o \infty$
- Control signals to figure out which input overwrites the flip-flop
- Use Vec1 and Vec2 to design control signals

SMITH - Use cases

Matrix Square and Full rank

- Stops when Vec1 is all one...
- At the end of computation the FF array holds the identity matrix
- Same operations done on \vec{b} .
- If $\vec{b^*}$ is the final state of \vec{b}
 - $ightarrow \vec{x} = \vec{b^*}$ is the unique solution of $A\vec{x} = \vec{b}$.

Proof

Original Equation $A\vec{x}=\vec{b}$ Unique solution to this is $\vec{x}=A^{-1}\vec{b}$ $A \to I$ is only possible \to Iff product of all linear operations on A equals A^{-1} Same operations on b gives $\vec{b} \to \vec{b^*} = A^{-1}\vec{b}$ QED

SMITH - Use cases

Matrix Square and NOT Full rank

- Never Stops \rightarrow Vec1 is never all one...
- At the end of computation bottom part holds the identity matrix
- Does not yield any meaningful solution.
- Additional counter logic required to stop infinite loop
 - \rightarrow Stop if counter > # Remaining rows.

SMITH - Use cases

Matrix Non-Square and Overdefined

- That is m > n, there are more equations than variables.
- The system is solvable iff

$$A \to \begin{pmatrix} 0 \\ I_n \end{pmatrix}, \quad \vec{b} \to \begin{pmatrix} 0 \\ \vec{b^*} \end{pmatrix}$$

- Again Additional counter logic required to stop infinite loop \rightarrow Stop if counter > m n.
- No solution if for any $\vec{t} \neq 0$:

$$A \to \begin{pmatrix} 0 \\ I_n \end{pmatrix}, \quad \vec{b} \to \begin{pmatrix} \vec{t} \\ \vec{b^*} \end{pmatrix}$$

Matrix Multiplication

Observe the following

$$D = \begin{pmatrix} I_n & A & 0 \\ 0 & I_n & B \\ 0 & 0 & I_n \end{pmatrix}, \quad D^{-1} = \begin{pmatrix} I_n & A & A \cdot B \\ 0 & I_n & B \\ 0 & 0 & I_n \end{pmatrix}$$

- Matrix multiplication $A \cdot B$ is possible given $3n \times 3n$ space
- Also observe if

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}, \quad B = \begin{pmatrix} \vec{b_1} \\ \vec{b_2} \\ \vdots \\ \vec{b_n} \end{pmatrix}$$

Then we have

$$A \cdot B = \begin{pmatrix} a_{11}\vec{b_1} \\ a_{21}\vec{b_1} \\ \vdots \\ a_{-n}\vec{b_n} \end{pmatrix} \oplus \begin{pmatrix} a_{12}\vec{b_2} \\ a_{22}\vec{b_2} \\ \vdots \\ a_{-n}\vec{b_n} \end{pmatrix} \oplus \cdots \oplus \begin{pmatrix} a_{1n}\vec{b_n} \\ a_{2n}\vec{b_n} \\ \vdots \\ \text{Equation Solvers over GF(2)} \end{pmatrix}$$

Matrix Multiplication

$$A \cdot B = \begin{pmatrix} a_{11}\vec{b_1} \\ a_{21}\vec{b_1} \\ \vdots \\ a_{n1}\vec{b_1} \end{pmatrix} \oplus \begin{pmatrix} a_{12}\vec{b_2} \\ a_{22}\vec{b_2} \\ \vdots \\ a_{n2}\vec{b_2} \end{pmatrix} \oplus \cdots \oplus \begin{pmatrix} a_{1n}\vec{b_n} \\ a_{2n}\vec{b_n} \\ \vdots \\ a_{nn}\vec{b_n} \end{pmatrix}$$

Matrix Multiplication

$$A \cdot B = \begin{pmatrix} a_{11}\vec{b_1} \\ a_{21}\vec{b_1} \\ \vdots \\ a_{n1}\vec{b_1} \end{pmatrix} \oplus \begin{pmatrix} a_{12}\vec{b_2} \\ a_{22}\vec{b_2} \\ \vdots \\ a_{n2}\vec{b_2} \end{pmatrix} \oplus \cdots \oplus \begin{pmatrix} a_{1n}\vec{b_n} \\ a_{2n}\vec{b_n} \\ \vdots \\ a_{nn}\vec{b_n} \end{pmatrix}$$

Matrix Multiplication

$$A \cdot B = \begin{pmatrix} a_{11}\vec{b_1} \\ a_{21}\vec{b_1} \\ \vdots \\ a_{n1}\vec{b_1} \end{pmatrix} \oplus \begin{pmatrix} a_{12}\vec{b_2} \\ a_{22}\vec{b_2} \\ \vdots \\ a_{n2}\vec{b_2} \end{pmatrix} \oplus \cdots \oplus \begin{pmatrix} a_{1n}\vec{b_n} \\ a_{2n}\vec{b_n} \\ \vdots \\ a_{nn}\vec{b_n} \end{pmatrix}$$

SMITH- Hermite Canonical form

Over/Under-determined systems

- Given Ax = b. A and b is first padded with null rows/cols to get a square matrix A^* and extended column vector b^* .
- A* converted to its Hermite Canonical Form H
- Do row operations $[A^*:I:b^*] \rightarrow [H:G:d]$
- Any general solution to Ax = b is of the form d + (I + H)z for any z, \rightarrow The columns of I+H form a basis for the null space of A

1	*	0	0	*	0	0	0
0	0	0	0	0	0	0	0
0	0	1	0	*	0	0	0
0	0	0	1	*	0	0	0
	_	_					
0	U	U	0	0	0	0	0
0	0	0		0			0

Over/Under-determined systems

- Upper triangular.
- If $h_{ii} = 0$, the row must be null
- If $h_{ii} = 1$, the col must be unit vector

Over/under-determined systems

- The SMITH circuit alone is insufficient.
- Other operations are required
- Depth is no longer constant (OPEN PROBLEM)

Quadratic Systems

Quadratic Systems

When d=2

- Solving degree d > 2 equations is NP-complete.
- Hardness of solving quadratics leveraged to construct PKC's.
 → HFE, QUARTZ, UOV, SFLASH etc.
- Quadratic over GF(2) has a maximum of $S=1+n+\binom{n}{2}$ non-zero coefficients:

$$P: c + a_1x_1 + a_2x_2 + \dots + a_nx_n + a_{12}x_1x_2 + a_{13}x_1x_3 + \dots + a_{n-1,n}x_{n-1}x_n$$

ullet Evaluating one poly over one point needs approx S bit-ops.

Standard Exhaustve search

When d=2, m equations, n variables

• Quadratic over GF(2) has a maximum of $S=1+n+\binom{n}{2}$ non-zero coefficients:

$$P: c + a_1x_1 + a_2x_2 + \dots + a_nx_n + a_{12}x_1x_2 + a_{13}x_1x_3 + \dots + a_{n-1,n}x_{n-1}x_n$$

- Evaluating one poly over 2^n point needs approx $S \cdot 2^n$ bit-ops.
- Half of them are roots of P
 - \rightarrow Evaluate them 2^{n-1} over the next polynomial.
 - \rightarrow Total of $S \cdot 2^{n-1}$ operations.
- Third equation needs $S \cdot 2^{n-2}$ operations and so on ...

$$Comp = 2^n \cdot \left[S + \frac{S}{2} + \frac{S}{4} + \dots \right] \approx S \cdot 2^{n+1} = O(n^2 2^n)$$

• Roots are points that are zeros that survive till the end.

Intuition

- Use Gray codes: $g_i = i \oplus (i \gg 1)$.
- Gray codes of successive integers differ by only 1 bit.

$$q_0 = 000$$

$$g_1 = 001$$

$$g_2 = 011$$

$$g_3 = 010$$

$$g_4 = 110$$

$$g_5 = 111$$

$$g_6 = 101$$

$$g_7 = 100$$

- We traverse the input space of f in a Gray code manner.
- From knowledge of $f(g_i)$: we can evaluate $f(g_{i+1})$ efficiently without having to evaluate the entire function.

Taylor Expansion

The Idea

- $f(g_0) = f(\vec{0})$ is just the constant term of f.
- ullet t is the bit-position where g_j and g_{j+1} differ \to Let's say we already have the value of $f_i(g_j)$

$$f(g_{j+1}) = f(g_j) \oplus \frac{\delta f}{\delta x_t}(g_j). \tag{1}$$

- Here $\frac{\delta f}{\delta x_t}$ is the 1st order derivative of the function f at the point x_t .
- For example if $f=x_1x_2\oplus x_3\oplus x_1x_4x_5$, $\to \frac{\delta f}{\delta x_1}=x_2\oplus x_4x_5$ and $\frac{\delta f}{\delta x_2}=x_1,\ \frac{\delta f}{\delta x_3}=1$ etc.
- \bullet Derivative has degree one less than f and is easier to compute.

Taylor Expansion

Example

- $\begin{array}{l} \bullet \text{ If } f = x_1x_2 \oplus x_3 \oplus x_1x_4 \oplus x_5, \\ \to \frac{\delta f}{\delta x_1} = x_2 \oplus x_4 \text{ and } \frac{\delta f}{\delta x_2} = x_1, \ \frac{\delta f}{\delta x_3} = 1, \ \frac{\delta f}{\delta x_4} = x_1 \text{ and } \frac{\delta f}{\delta x_5} = 1. \end{array}$
- If original is quadratic derivatives are linear!!

$$ightarrow rac{\delta^2 f}{\delta x_1 x_2} = 1$$
, $rac{\delta^2 f}{\delta x_1 x_3} = 0$ etc

- \rightarrow Second derivatives are constant..
- Start with f(00000) = 0, next we find $f(g_1) = f(00001)$

$$f(00001) = f(00000) \oplus \frac{\delta f}{\delta x_1}(00000) = 0 \oplus x_2 + \oplus x_4|_{00000} = 0$$

• Then $f(g_2) = f(00011)$

$$f(00011) = f(00001) \oplus \frac{\delta f}{\delta x_2}(00001) = 0 \oplus x_1|_{00001} = 1$$

• Each next step takes evaluation of linear equation

Main Theorem

All the zeroes of a single multivariate polynomial f in n variables of degree d can be found in essentially $d \cdot 2^n$ bit operations (plus a negligible overhead), using n^{d-1} bits of read-write memory, and accessing n^d bits of constants, after an initialization phase of negligible complexity $O(n^{2d})$.

- You need to pre-compute all derivatives.
- Precomputation needs time and energy and space.
- Precomputation required for each new equation system.
- Works best if d=2 or lower.

Systems of arbitrary degree

Truth Tables

×0×1×2	P ₀	P ₁	P ₂	• • •	Pm	\bigvee_{P_i}	_
000	0	1	1		0	1	
001	1	0	0		1	1	
010	0	1	1		1	1	
011	1	1	0		0	1	
100	0	0	0		0	0	Root=100
				•			
110	0	1	0	•	1	1	
111	0	1	1		0	1	

Truth Tables

• Evaluation of a function at all points of its space. How can they help?

Möbius Transform

Möbius Transform

- Given the algebraic equation of any n-variable Boolean function, how to evaluate it over all the 2^n points of its input domain (i.e. find truth table)?
- Given truth table of a Boolean function how to deduce its algebraic equation?
- Answer to both the above is Möbius Transform.
- It is a linear, involutive transform that does both the above.
- Requires $n \cdot 2^{n-1}$ bit-operations.

Möbius Transform

Figure: Möbius transform on $f=1\oplus x_0x_1\oplus x_2\oplus x_0x_2$. The blue shaded component represents one butterfly unit.

Salient Points

- Note we have lexicographical indexing.
- $t_6 = 1 \Rightarrow 6 = (110)_2 \Rightarrow$ the ANF contains the $x_0 x_1 = x_0^1 \cdot x_1^1 \cdot x_2^0$ term.

Möbius Transform

Figure: Möbius transform on $f=1\oplus x_0x_1\oplus x_2\oplus x_0x_2$. The blue shaded component represents one butterfly unit.

Salient Points

- n stages and 2^{n-1} xors per stage.
- Involutive: the same operations on ANF will give back TT.

The Mathematics

- If $\vec{v} = [v_0, v_1, \dots, v_{2^n-1}]$ be the truth-table of f (note $v_i = f(i)$).
- If $\vec{u} = [u_0, u_1, \dots, u_{2^n-1}]$ be the ANF of f.
- Then it is well known that

$$\vec{v} = M_n \cdot \vec{u}$$

• Note $M=m_{ij}$ is such that

$$m_{ij} = 1$$
 if $j \leq i$ and 0 otherwise.

• Eg $100 \le 101$, but $011 \not \le 100$ since 011 exceeds 100 in the last 2 bit-locations.

The Mathematics

- \bullet M_n is well studied in literature: Lower triangular + Involutive.
- Since $M_n = M_n^{-1}$, both $\vec{v} = M_n \cdot \vec{u}$ and $\vec{u} = M_n \cdot \vec{v}$ hold.
- Define $M_1=\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$, then for all n>1, we have $M_n=M_1\otimes M_{n-1}$, where \otimes is the matrix tensor product.

$$M_3 = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

Figure: Möbius transform on $f=1\oplus x_0x_1\oplus x_2\oplus x_0x_2$. The blue shaded component represents one butterfly unit.

- Huge combinatorial circuit that stacks the stages one by one.
- Calculates in one single clock cycle: $n \cdot 2^{n-1}$ xor gates.

Figure: Möbius transform on $f=1\oplus x_0x_1\oplus x_2\oplus x_0x_2$. The blue shaded component represents one butterfly unit.

- Round based circuit: One stage in one clock cycle.
- Calculates in one n clock cycles: 2^{n-1} xor gates + Register of 2^n bits.

Figure: Round based Circuit.

- $\pi_n(2x) = x$, and $\pi_n(2x+1) = 2^{n-1} + x$ for all $0 \le x < 2^{n-1}$
- If P_n is the permutation matrix for π_n , it can be shown $M_n = (P_n \cdot B_n)^n$.

Figure: Synthesis results for Expmob1 and Expmob2 circuits

Degree Bound Functions

Polynomial number of Coeffciients

- ANF of Linear function: n+1 coefficients.
- ANF of Quadratic function: $\binom{n}{2} + n + 1$ coefficients.
- ANF of Degree d function: $\binom{n}{\downarrow d} = \sum_{i=0}^d \binom{n}{i}$ coefficients $\in O(n^d)$.
- Challenge: With a register of size $\binom{n}{\perp d}$, can we compute the transform?

Take a look back

Figure: Round based Circuit.

- First stage $A_0 \rightarrow \text{vectors } A_{\text{top}}$ and A_{bottom} .
- A_{top} is actually ANF vector for $f(0, x_1, x_2)$ (in n-1 variables!!)
- A_{bottom} is actually ANF vector for $f(1, x_1, x_2)$ (in n-1 variables!!)
- Recursively apply Möbius Transform to these smaller vectors

Möbius Transform with Polynomial Space [Din21]

Algorithm 1: Recursive Möbius Transform

Input: A_0 : The compressed ANF vector of a Boolean function f

Möbius (A_0, n, d)

1

2

```
Input: n: Number of variables, d: Algebraic degree
Output: The Truth table of f
/* Final step, i.e. leaf nodes of recursion tree */
if n=d then
    Use the formula B = M_n \cdot A_0 to output partial truth table B.
    /* Use either Expmob1/Expmob2 to do this */
end
else
    Declare an array T of size \binom{n-1}{d} bits.
    /* Compute the 2 operations of the butterfly layer */
    Store 1st butterfly output i.e. A_{top} in T (requires no xors).
    Call Möbius (T, n-1, d)
    Store 2nd butterfly output i.e. A_{\rm bottom} in T (requires some xors).
    Call Möbius (T, n-1, d)
end
```

Recursion tree

Figure: Recursion tree for the Möbius Transform algorithm. The blue shaded component roughly represents one arm of the butterfly unit.

- The Tree requires Depth first Traversal
- In Software this requires context switches, every time we traverse one level down.
- Mapping to hardware non trivial.

Figure: Hardware architecture **Polymob1** for the Möbius Transform algorithm. The blue shaded part roughly represents one arm of the butterfly unit.

- Primitive attempt to map algorithm to hw: can this work ?
- ullet Each level needs own storage of size ${n-i \choose \downarrow d}$
- Task 1: Can we prove the space requirement is $O(n^{d+1})$??

Proof

• We need to prove the following:

$$S(n,d) = \sum_{i=0}^{n-d} \binom{n-i}{\downarrow d} \in O(n^{d+1}).$$

To prove this we make use of the hockey-stick identity [?] which states that $\sum_{m=d}^{n} {m \choose d} = {n+1 \choose d+1}$. Note that expanding out S(n,d) we get

Proof (contd)

Applying the hockey-stick identity on each column we get

$$S(n,d) < \binom{n+1}{d+1} + \binom{n+1}{d} + \cdots + \binom{n+1}{1}$$

Using mathematical induction it is easy to prove the hypothesis $\mathcal{P}(d):\sum_{i=0}^d \binom{n}{i} < n^d$, for all $d \geq 2, \ n > d$. The base case for d=2, amounts to $n(n-1)/2+n+1 < n^2 \Rightarrow n^2 > n+2$, which holds for all n>2. Taking $\mathcal{P}(d)$ to be true we have

$$\mathcal{P}(d+1): \sum_{i=0}^{d+1} \binom{n}{i} < n^d + \binom{n}{d+1}$$

$$< n^d + \frac{n^{d+1}}{(d+1)!} = n^d \left(1 + \frac{n}{(d+1)!} \right) < n^{d+1}$$

Therefore we have $S(n,d) < (n+1)^{d+1}$, from which we can conclude it is $O(n^{d+1})$.

Figure: Hardware architecture **Polymob1** for the Möbius Transform algorithm. The blue shaded part roughly represents one arm of the butterfly unit.

- One reg of size $\binom{n}{\downarrow d}$ for A₀, but only one reg of size $\binom{n-1}{\downarrow d}$.
- ullet If level 2 stores A_{top} , it must preserve this till its entire left sub-tree is executed.
- Only then overwrite to A_{bottom}.

Figure: Hardware architecture **Polymob1** for the Möbius Transform algorithm. The blue shaded part roughly represents one arm of the butterfly unit.

- Multiplexer select signals control the flow.
- ullet 3:1 multiplexer o Either preserve state or overwrite with $A_{
 m top/bottom}$
- However only 2:1 mux is sufficient.

Figure: Hardware architecture **Polymob1** for the Möbius Transform algorithm. The blue shaded part roughly represents one arm of the butterfly unit.

Every level sets one bit in the function argument.

Figure: Hardware architecture **Polymob1** for the Möbius Transform algorithm. The blue shaded part roughly represents one arm of the butterfly unit.

• Let us label each ANF as A[depth]bits

Figure: Hardware architecture **Polymob1** for the Möbius Transform algorithm. The blue shaded part roughly represents one arm of the butterfly unit.

Figure: Hardware architecture **Polymob1** for the Möbius Transform algorithm. The blue shaded part roughly represents one arm of the butterfly unit.

1.5.2024

Simulation n = 5, d = 2

	$\ell = 0$	$\ell = 1$	$\ell=2$	$\ell = 3$
0	0	0	0	0
1	0	$4 \cdot S[0]_0$	$2 \cdot S[1]_0$	$S[2]_0$
	0	$4 \cdot S[0]_1$	$4 \cdot S[0]_0 + 2 \cdot S[1]_1$	$2 \cdot S[1]_0 + S[2]_1$
_	0	$4 \cdot S[0]_2$	$4 \cdot S[0]_1 + 2 \cdot S[1]_2$	$4 \cdot S[0]_0 + 2 \cdot S[1]_1 + S[2]_2$
4	0	$4 \cdot S[0]_3$	$4 \cdot S[0]_2 + 2 \cdot S[1]_3$	$4 \cdot S[0]_1 + 2 \cdot S[1]_2 + S[2]_3$
5	0	$4 \cdot S[0]_4$	$4 \cdot S[0]_3 + 2 \cdot S[1]_4$	$4 \cdot S[0]_2 + 2 \cdot S[1]_3 + S[2]_4$
6	0	$4 \cdot S[0]_5$	$4 \cdot S[0]_4 + 2 \cdot S[1]_5$	$4 \cdot S[0]_3 + 2 \cdot S[1]_4 + S[2]_5$
7	0	$4 \cdot S[0]_{6}$	$4 \cdot S[0]_5 + 2 \cdot S[1]_6$	$4 \cdot S[0]_4 + 2 \cdot S[1]_5 + S[2]_6$

- Left Column needs to be 0,1,2,3,...7
- ullet Solve the integer equation system: look for solutions in $\{0,1\}$

General Case (u:=n-d)

$$2^{i} \cdot S[j]_{0} \qquad + \cdots \qquad + S[u-1]_{0} \qquad = 1 \\ 2^{i} \cdot S[j]_{0} \qquad + \cdots \qquad + S[u-1]_{i} \qquad = i+1 \\ \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \\ 2^{u-1} \cdot S[0]_{0} \qquad + 2^{u-2} \cdot S[1]_{1} \qquad + \cdots + 2^{i} \cdot S[j]_{j} \qquad + \cdots \qquad + S[u-1]_{u-1} \qquad = u \\ 2^{u-1} \cdot S[0]_{1} \qquad + 2^{u-2} \cdot S[1]_{2} \qquad + \cdots + 2^{i} \cdot S[j]_{j+1} \qquad + \cdots \qquad + S[u-1]_{u} \qquad = u+1 \\ \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \\ 2^{u-1} \cdot S[0]_{2u-u-1} \qquad + 2^{u-2} \cdot S[1]_{2u-u} \qquad + \cdots + 2^{i} \cdot S[j]_{-i+2u-2} \qquad + \cdots \qquad + S[u-1]_{2u-2} \qquad = 2^{u}-1$$

- Solve the integer equation system: look for solutions in $\{0,1\}$
- Does Solution exist? Is solution implementable?

General Case (u:=n-d)

$$2 \cdot S[u-2]_0 \quad + S[u-1]_0 \quad = 1 \\ 2 \cdot S[u-2]_0 \quad + S[u-1]_1 \quad = 2 \\ \vdots \\ 2^i \cdot S[j]_0 \quad + \cdots \quad + S[u-1]_i \quad = i+1 \\ \vdots \\ 2^{u-1} \cdot S[0]_0 \quad + 2^{u-2} \cdot S[1]_1 \quad + \cdots + 2^i \cdot S[j]_j \quad + \cdots \quad + S[u-1]_{u-1} \quad = u \\ 2^{u-1} \cdot S[0]_1 \quad + 2^{u-2} \cdot S[1]_2 \quad + \cdots + 2^i \cdot S[j]_{j+1} \quad + \cdots \quad + S[u-1]_u \quad = u+1 \\ \vdots \\ 2^{u-1} \cdot S[0]_{2u-u-1} \quad + 2^{u-2} \cdot S[1]_{2u-u} \quad + \cdots + 2^i \cdot S[j]_{-i+2u-2} \quad + \cdots \quad + S[u-1]_{2u-2} \quad = 2^u-1$$

- Look at the i-th column shaded in green (note j = u 1 i)
- $S[j]_t$ is the i+1-th lsb of $(i+1), (i+2), \ldots$, i.e. the (i+1)-th lsb of t+i+1.

General Case (u:=n-d)

$$2^{i} \cdot S[j]_{0} \qquad + \cdots \qquad + S[u-1]_{0} \qquad = 1 \\ 2^{i} \cdot S[j]_{0} \qquad + \cdots \qquad + S[u-1]_{i} \qquad = i+1 \\ \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \\ 2^{u-1} \cdot S[0]_{0} \qquad + 2^{u-2} \cdot S[1]_{1} \qquad + \cdots + 2^{i} \cdot S[j]_{j} \qquad + \cdots \qquad + S[u-1]_{u-1} \qquad = u \\ 2^{u-1} \cdot S[0]_{1} \qquad + 2^{u-2} \cdot S[1]_{2} \qquad + \cdots + 2^{i} \cdot S[j]_{j+1} \qquad + \cdots \qquad + S[u-1]_{u-1} \qquad = u+1 \\ \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \\ 2^{u-1} \cdot S[0]_{2u-u-1} \qquad + 2^{u-2} \cdot S[1]_{2u-u} \qquad + \cdots + 2^{i} \cdot S[j]_{-i+2u-2} \qquad + \cdots \qquad + S[u-1]_{2u-2} \qquad = 2^{u}-1$$

- A *u*-bit decimal up-counter for the variable *t*.
- A series of u incrementers to generate $t+1, t+2, \ldots, t+u$.

Circuit is implementable in logarithmic depth

Figure: Visual representation of the addition t + i + 1

- Having the whole incrementer circuit is unnecessary.
- We are only interested in (i+1)-th lsb of t+i+1.
- The expression is $x_i \oplus z_s \prod_{k=n_s+1}^{i-1} x_k$.
- ullet Can be implemented using $2\log_2 u$ depth.

Figure: Hardware Solver Polysolve1

- After OR-ing, Priority Encoder gives the location of 1st 0 in the table.
- The solver will extract one root per partial truth table.
- Note large critical path !!

Figure: Hardware Solver Polysolve2

Pipelining reduces the length of critical path.

1 5 2024

Example

If d=4, and the ${\bf OR}$ of the truth tables is $T_0=1011\ 1111\ 1111\ 0111$

- \bullet At $\tau=0$ Penc outputs 0001
- Decoder op $D_0 = 0100\ 0000\ 0000\ 0000$
- $T_1 = T_0 \lor D_0 = 1111 \ 1111 \ 1111 \ 0111$
- $HW(T_1) = HW(T_0) + 1$, and is written back to **Reg2**.
- \bullet At $\tau=1$ Penc outputs next root 1100
- We have $D_1 = 0000 \ 0000 \ 0000 \ 1000$.
- \bullet $T_2 = T_1 \lor D_1 = 1111\ 1111\ 1111\ 1111$ which is now the all one string.

Problem

The critical path of priority encoder+ decoder increases as \emph{d} increases

• Task 2: How to reduce it ?

Problem

The critical path of priority encoder+ decoder increases as d increases

• Task 2: How to reduce it?

Solution

The Enc+Dec basically flips last 0 from a string Other solutions exist n OR n + 1 ??

n: 1100 0101 0111

+1

n+1: 1100 0101 1000

n: 1100 0101 0111

 $\mathbf{n} \vee \mathbf{n+1} : 1100 \ 0101 \ 1111$

Problem

The critical path of priority encoder+ decoder increases as d increases

• Task 2: How to reduce it ?

Solution

- In stead of Encoder followed by Decoder, we can do Encoder and n OR n+1 block in parallel.
 - Simultaneously fishes root+ flips zero.

Generate/propagate

- $g_i = a_i \cdot b_i$ and $p_i = a_i \oplus b_i$
- $G_0, P_0 = g_0, p_0$ and $G_i, P_i = (g_i, p_i) \circ (G_{i-1}, P_{i-1})$
- $(x_1, y_1) \circ (x_2, y_2) = (x_1 \vee (y_1 \cdot x_2), y_1 \cdot y_2).$

Generate/propagate

- Has logarithmic depth
- Can be used with carry-select approach
- ullet TO get faster adders for arbitrary d.

Time taken

1.5.2024

Problem

- Plain Circuit takes 2^{n-d} cycles.
- Task 3: How much time does this take if there are R roots?

Time taken

Problem

- Plain Circuit takes 2^{n-d} cycles.
- Task 3: How much time does this take if there are R roots?

Solution

- If partial truth table has $r_i = 0$ roots: no additional cycle.
- If partial truth table has $r_i = 1$ roots: one additional cycle.
- If partial truth table has $r_i = 2$ roots: two additional cycle.
 - Therefore $1 + r_i$ cycles per partial TT

$$\sum_{i=1}^{2^{n-d}} 1 + r_i = 2^{n-d} + \sum_{i=1}^{n-d} r_i = 2^{n-d} + R$$

Energy Efficiency

Wasteful Computation

- Suppose we have 50 equations in 50 variables.
 - \rightarrow The common solution of 1st 10 equations is 100.
 - \to Evaluating Möbius Transform for the remaining equations \Rightarrow Evaluating 40 equations at 2^{50} points each.
 - \rightarrow Evaluating 40 equations at 10 points is sufficient !!!!
- We found energy efficient solution for this.
- The idea is to filter any common root of first 10 eqns using Dot-product circuit.

Energy Efficiency

Wasteful Computation

- ullet First run Möbius Transform on a small number of μ equations.
 - \rightarrow Find the common solution set Λ of 1st μ equations.
 - \rightarrow The remaining equations has to be checked only on above set
- So how do we this?
- Each $r \in \Lambda$ has to be evaluated on $m \mu$ equations.

Tools

Circuit components

- Root expander: $RE(n,d):\{0,1\}^n \to \{0,1\}^{\binom{n}{\downarrow d}}$.
 - \rightarrow Eg.RE(4,3) over the vector $(x_0, x_1, x_2, x_3) = (1,0,1,1)$

 - \rightarrow The expanded root **r**=1111 0001 110
 - \rightarrow Total hardware overhead is $\binom{n}{\downarrow d} n$ **AND** gates.
- Dot-Product: Eg $f = 1 \oplus x_0 \oplus x_2 \oplus x_0 x_1 \oplus x_2 x_3$.
 - \rightarrow Vector Description **v**=1011 0001 001.
 - \rightarrow The dot-product $\mathbf{r} \cdot \mathbf{v} = 0$, equals f(r).
 - $\rightarrow \binom{n}{\downarrow d}$ **AND** gates and $\binom{n}{\downarrow d} 1$ **XOR**

Circuit

1.5.2024

PolySolve3 instance with μ equations

Time taken

1.5.2024

Problem

- Plain Circuit takes $2^{n-d} + R$ cycles.
- Task 3: How much time does this take if there are μ instances ?

Time taken

Problem

- Plain Circuit takes $2^{n-d} + R$ cycles.
- Task 3: How much time does this take if there are μ instances ?

Lemma

Let $f_1, f_2, \ldots, f_{\mu}$ be iid balanced Boolean functions of n variables each. Then the expected cardinality of the solution space of the system of equations $f_1 = f_2 = \cdots = f_{\mu} = 0$ is $2^{n-\mu}$.

• So $R + 2^{n-d} = 2^{n-\mu} + 2^{n-d}$ cycles on average.

Energy

Figure: Energy consumption for varying μ for n=m=20. The colored dashed lines show the energy consumed in the **Polysolve3** circuit for the corresponding equation systems.

Depth Bound trees

Möbius (A_0, n, d)

Algorithm 2: Recursive Möbius Transform

Input: A_0 : The compressed ANF vector of a Boolean function f

```
Input: n: Number of variables. d: Algebraic degree
Output: The Truth table of f
/* Final step, i.e. leaf nodes of recursion tree */
if n=d then
    Use the formula B = M_n \cdot A_0 to output partial truth table B.
    /* Use either Expmob1/Expmob2 to do this */
end
else
    Declare an array T of size \binom{n-1}{d} bits.
    /* Compute the 2 operations of the butterfly layer */
    Store 1st butterfly output i.e. A_{top} in T (requires no xors).
    Call Möbius (T, n-1, d)
    Store 2nd butterfly output i.e. A_{\text{bottom}} in T (requires some xors).
    Call Möbius (T, n-1, d)
end
```

1

2

Depth Bound trees

Möbius (A_0, n, d)

Algorithm 3: Recursive Möbius Transform

```
Input: A_0: The compressed ANF vector of a Boolean function f
Input: n: Number of variables. d: Algebraic degree
Output: The Truth table of f
/* Final step, i.e. leaf nodes of recursion tree */
if n=h>d then
    Use the formula B = M_n \cdot A_0 to output partial truth table B.
    /* Use either Expmob1/Expmob2 to do this */
end
else
    Declare an array T of size \binom{n-1}{d} bits.
    /* Compute the 2 operations of the butterfly layer */
    Store 1st butterfly output i.e. A_{top} in T (requires no xors).
    Call Möbius (T, n-1, d)
    Store 2nd butterfly output i.e. A_{\text{bottom}} in T (requires some xors).
    Call Möbius (T, n-1, d)
end
```

1

2

Depth boundedness

Figure: Hardware architecture **Polymob1** for the Möbius Transform algorithm. The blue shaded part roughly represents one arm of the butterfly unit.

- Number of levels shrink to n-h from n-d.
- Faster computation: $2^{n-\mu} + 2^{n-d} \rightarrow 2^{n-\mu} + 2^{n-h}$.

Depth boundedness

Figure: Hardware architecture **Polymob1** for the Möbius Transform algorithm. The blue shaded part roughly represents one arm of the butterfly unit.

- Downside **Expmob1**, encoder needed over h > d bits.
- Increases the critical path.

Energy reduction

Figure: Energy decrease with increasing h for new solvers for n=20, $h=\mu$. The colored horizontal lines indicate the best possible energy consumption for the full depth circuit for the same equation system.

SAKURA-X

Figure: SAKURA-X

Proof of Concept

- SAKURA-X mainly built for side-channel experiments, limited computational power.
- We could solve quadratic equations of upto 50 variables in 8 hours.
- ullet TODO o Implement on an FPGA cluster and solve upto 100 variables.

99 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

Conclusion

1 5 2024

- Given m equations in n variables over GF(2).
- Asymptotically, all the solutions can be found using a circuit of area $\propto m \cdot n^{d+2}$.
- This is not energy-efficient however: Möbius Transform does a lot of redundant computations.

• Circuit for energy efficiency also proposed.

THANK YOU

101 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024