Equation Solvers over GF(2)

Subhadeep Banik

University of Lugano

Security Privacy and Applied Cryptographic Engineering,
Indian Institute of Technology, Roorkee

14th December 2023

.. EVEREST &

FOR

. A
AT A)= Z(ity 8 ‘

Sustainable Cryptanalysis

LTS

e The idea of making dedicated machines to attack ciphers is not new.

;
L
Ve QS

Source: Wikipedia
2 Subhadeep Banik

Equation Solvers over GF(2) 1.5.2024

Sustainable Cryptanalysis

e Why should we care to make circuits ?

Ll
i~

Source: Wikipedia

3 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

In Software

e Most general purpose CPU's have the following structure
[A] A processing unit having logic gates and registers
[B] A control unit having an instruction register and a program counter
[C] Primary memory that stores data and instructions
[D] Secondary memory, usually an external mass storage.

e Any computational step of the algorithm
— First broken down into a sequence of instructions
— Resides in the control unit.
— Fetches data from the primary/secondary memory,
— Processed in the processing unit.

4 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

In Software @ I

e Dedicated Circuit
[A] Collection of logic elements
[B] Assembled specifically for the given task
[C] Thus executes them with much greater efficiency.
[D] Faster and more energy efficient.

e Gaussian Elimination of a 656 x 656 matrix
— Dedicated circuit [SMITH, Bogdanov et al. 07 |
— Requires 86 ms.
— On a Linux 800 MHz PIIl PC would take around 40 minutes,
— We can execute computationally heavy tasks on such circuits.

5 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

Introduction: Solving an Equation System @

e Given m eqns P1, Py, ..., P, of n variables over GF(2) of max degree d.
— Usually m = n, sometimes m > n
— Each equation is a multivariate polynomial over GF(2)
— The algebraic degree d is usually small.
— Task: find a common root: r € {0,1}" such that P;i(r) =0, V i.

e Problem arises in many cryptographic contexts.
— Block ciphers with low multiplicative complexities like LowMC
— Given single pt/ct: solving low degree polynomials.
— Signature schemes like UOV.
— Cryptanalysis: solving quadratic polynomials over GF(2).

6 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

Linear Systems

7 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

If Equations are Linear (d = 1)

LSE (m equations,n variables)

e Typical LSE

a1121 + @122 + -+ + a1pTy = by

a21%1 + a22T2 + - -+ + a2p Ty = by

Am1%1 + AmaZ2 + - + ApTn = bm

e Equivalently AZ = b

e Linear equations can be Solved by Gaussian Elimination (GE) efficiently.
e GE takes n> operations in the worst case.
e Given a linear system of form AZ = b
— Convert to equivalent system U - & = o, where U is upper-triangular.
— Done by applying elementary row operations.

8 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

MR4I ;7

Step 1 Step 2 Table T
A
q |
All 2% linear
G = combinations of
3k - the yellow rows
\
f Step3

Add T[] to blue rows

Popular in SW
e used in computer algebra packages like SAGE.

e |t is interesting to see how far this cam be applied in HW

9 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

Gaussian Elimination

Gaussian_Elimination(A, n)
Input: Matrix A € {0,1}™*" : Input matrix

for each column k=1 — n do

s:=k;

while a,, = 0 do
| s:=s+1;

end

Swap row aj, with row ag;
for eachrowi=1 — n do
if ¢ # k and a;; = 1 then
| G5 i= Gij D ag;
end
end

end

10 Subhadeep Banik

Equation Solvers over GF(2)

1.5.2024

SMITH - Architecture @ I

e GE requires 2 operations: row addition/row swap

10010110

00010101

11001010

00110101

11000101 e Pivot is the top-left element of unprocessed
00110001 rows.

01011011

10001101

Pivot

11 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

SMITH - Architecture @ I

e GE requires 2 operations: row addition/row swap

10010110

00010101

01011100

00110101

01010011 e Column sweep once pivot is fixed.
00110001

01011011

0001101 18-

Pivot

12 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

SMITH - Architecture @ I

e GE requires 2 operations: row addition/row swap

10010110
00010101
0101110 0<|I>
00110101
01010011 e Pivot can not be zero. So swap with next
00110001 available row which is unprocessed.
01011011
00011011
Pivot

13 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

SMITH - Architecture @ I

e GE requires 2 operations: row addition/row swap

10010110
01011100
00010101<|I>
00110101
01010011 e Swap is done. Ready for next row
00110001 operation.
01011011
00011011
Pivot

14 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

SMITH - Architecture @ I

e GE requires 2 operations: row addition/row swap

10010110
01011100
00010101
00110101
00001111 e Second column is cleared.
00110001
00000111
'oo0o011011
Pivot

15 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

Circuit Issues

e Assume each element is stored in a single flip-flop.

1

COOCOCOOO =
O=O=OMOO
OCOoO=O~=OOO
[S T G S g g g Y
~_NOOOMO

Pivot

0

16 Subhadeep Banik

COOCO =i pd il

— OO OO -

e

0
1
0
1

o,

e Pivot is ever changing. How to keep track
of it 7

e Can not swap with already processed row...
e How to select next row for swap?

Equation Solvers over GF(2) 1.5.2024

SMITH - Architecture @ Iﬁm

e Initially both circuit and state are same
e Two additional registers Vecl and Vec2
e To keep track of control flow.

10010110 1 0
00010101 . 0
11001010 0
00110101 0
11000101 0
00110001 0
01011011 0
10001101 0

Vecl

Pivot Pivot

17 Subhadeep Banik Equation Solvers over GF(2)

locccocococo~|

<
©
0,
N

1.5.2024

SMITH - Architecture

e Diagonal flow brings aj; to bottom-left (next pivot shifts to (1,1)!!!)
e The parts in red, blue and orange move accordingly.
e Orange part moves without xor operation/ purple is all zero

0

COoO0COCOOO M
O~ROROMOO
co~O~ROOO
T g g i g g g
-0 00 MO

Pivot

18 Subhadeep Banik

COOO =t i ol

— O O OO
e

0
1

0o

1

OCO~OMOMO

COO=OMOO
G G g W g g

1

O-=M~OOOM=O
O OO0 M =

Pivot

-0 O OO
O = O
OO ODOOOO

lmocococococoo|

0
0
0
0
0
0
0
1

Vecl Vec2

Equation Solvers over GF(2) 1.5.2024

SMITH - Architecture

e Xor rule: New a;; = a;t1, j+1 ® a1, j41 - @411
e Vecl=Vecl < 1 || 1 (last row is processed).
o Vec2=Vec2 < 1 (last row is current row).

10010110 00101
00010101 10111
01011100<|I> 01101
00110101 10100
01010011 01100
00110001 10110
01011011 00110
00011011 00101
Pivot Pivot

19 Subhadeep Banik

= -=-=-OoOM-OOO
— -

O = O
_ OO OOOOO

lmococoocococoo|
lmoccocococoo|

Vecl Vec

N

Equation Solvers over GF(2) 1.5.2024

SMITH - Xor rule

Row operations

1 ais - aq az O (a’12 . a21) ao3 D (CL13 . a21) 0
" a2 @ (a12 : a31) assz O (a13 . a31) ... 0
a21 a2 - A2p
% N .
an2 D (a12 - a an3 D (a3 - a .
Ap1 Gp2 -+ Gpn n2 (all22 nl) n3 (all?)?) nl) o

20 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

SMITH - Architecture [, 7] &3

e Pivot is already at (1,1) and zero — Now row swaps are required
e Instead of row swap, we circularly rotate unprocessed rows till ai; # 0.
e Need to do same operation to the b in AZ = b.

10010110 00101010, ||0]]|0
00010101<|'> 10111000, (|0]|0
01011100 01101010, (|00
00110101 10100110, (|0]|0
01010011 01100010, (|00
00110001 10110110 [|o|]|O
01011011 00110110*<olo
00011011 00101101 1 |1
- V;Ve;
Pivot Pivot

21 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

SMITH - Architecture [, 7] &3

e After one swap pivot is already non-zero
e Ready for next row operation.
e Again we do diagonal movement on unprocessed rows.

0 —

1001011 10111000, |[0f|0
01011100<|'> 01101010, [lo]|0
00010101 10100110, ||0]|0
00110101 01100010, (|00
01010011 10110110, ||0]|0
00110001 00110110 [[of]|0
01011011 00101010"{of|0
00011011 00101101 1 |1
. V;Ve;
Pivot Pivot

22 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

SMITH - Architecture @ |

e After row operation: last 2 cols are cleared.
e Bottom left corner becomes identity.
e Stops when Vecl is all one.

COO0OOCOCOO ==
OCOO0OOCOO~=O
OCOoO=O=OOO
=l = e
_O0O0O~=OO~O
Ot O it ek e
-0 =000
— e - O

® @D

\

~O~OO0OMOO
i O ek O bt el i
O == =000
SO M-

s

o~mocococococo

lmrocoocococoo|
lorcocococoo|

cocooco~ORO
e O e O =
_-ocoocooo

Vecl Vec

3
<
o
-+
N

Pivot

23 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

SMITH - Swap rule @I

1 a;
a3 ai
a3 a3
a; ai—1

_)
A1 @41
Ai+2 Ai+2
Ai+3 Qi+3
L an i L a?L J

24 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

SMITH - RUNTIME %=

e What is the average Runtime for n x n matrix???
e At least n row xors are required.
e Additional time depends on number of row swaps.

0 —

1001011 00101010, ||0]]|0
00010101<|'> 10111000, (|0]|0
01011100 01101010, (|00
00110101 10100110, (|0]|0
01010011 01100010, (|00
00110001 10110110 [|o|]|O
01011011 00110110*<olo
00011011 00101101 1 |1
- V;Ve;
Pivot Pivot

25 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

SMITH - RUNTIME %=

e If Pivot == 1 (p = 3), no swaps are required (zero additional time)

e After one circular rotate if pivot==1, no further swaps are necessary.

e Thus one additional cycle in this case (p =).

10010110 00101010, ||0]]|0
00010101<|'> 10111000, (|0]|0
01011100 01101010, (|00
00110101 10100110, (|0]|0
01010011 01100010, (|00
00110001 10110110 [|o|]|O
01011011 00110110*<olo
00011011 00101101 1 |1
- V;Ve;
Pivot Pivot

26 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

SMITH - RUNTIME %=
e If Pivot == 1 after ¢ rotations (p = %tlﬂ), t additional time.
.E:O.%+1.%4_2.%4_...4_15.@4_...%1_

e Every row xor needs one extra cycle on average — 2n cycles.

0 —

1001011 00101010, ||0]]|0
00010101<|'> 10111000, (|0]|0
01011100 01101010, (|00
00110101 10100110, (|0]|0
01010011 01100010, (|00
00110001 10110110 [|o|]|O
01011011 00110110*<olo
00011011 00101101 1 |1
- V;Ve;
Pivot Pivot

27 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

SMITH - Each flip-flop (7] B
e Constant Depth circuit: enables low critical path even as n — oo

e Control signals to figure out which input overwrites the flip-flop
e Use Vecl and Vec2 to design control signals

D.Q. D

rotate Q—)
A
/\
A
row addition

;_ 00 |;

(] oo

28 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

L
L

SMITH - Use cases

Matrix Square and Full rank

e Stops when Vecl is all one...
e At the end of computation the FF array holds the identity matrix
e Same operations done on b.
e If b* is the final state of b
— 7= b* is the unique solution of A7 = b.

Proof

Original Equation AZ = b

Unique solution to this is # = A~1b

A — I is only possible

— Iff product of all linear operations on A equals A1

Same operations on b gives b— b= A"1p
QED

29 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

SMITH - Use cases ﬁl

Matrix Square and NOT Full rank

e Never Stops — Vecl is never all one...
e At the end of computation bottom part holds the identity matrix
e Does not yield any meaningful solution.
e Additional counter logic required to stop infinite loop
— Stop if counter > # Remaining rows.

inf loop
1001 e e e (e 000 0 00
0001 ee e g; XX
11 00eee(e 00 0 0 00
e 0o 0 00) eeoe e 10000
e 0o 0 0) o —Pp eeo e 01000
o 0o 0 0 [I) eeo e 00100
0101 ee0e] eeoe 00O01O
1000e e 0] eee 0000O01

30 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

SMITH - Use cases

Matrix Non-Square and Overdefined

e That is m > n, there are more equations than variables.

e The system is solvable iff
(0) - E 0)
A b
— 7. — Rt

e Again Additional counter logic required to stop infinite loop
— Stop if counter > m — n.

e No solution if for any £ # 0:

0 - {f}
A— 7. b— s

31 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

SMITH - Other Uses

Matrix Multiplication
e Observe the following

I, A 0 I, A A-B
D=\|0 I, B|, D'=|0 I, B
0 0 I, 0 0 I

e Matrix multiplication A - B is possible given 3n x 3n space
e Also observe if

a1 a2 A1n b_}
az1 a3 Q2n by
A= , B=1] .
an1 An2 Ann bn
e Then we have
a11by a12b2 a1nbn
a1, a22b2 aonby,
A-B= . S5 . G- b .
32 Subhadeep Banik

- - Eq ation Solverp over GF(2)
an1by an2bo

1.5.2024
ann n

SMITH - Other Uses

Matrix Multiplication

aub;i alzbj% alnb:,}
a21b; a22b2 aznb
anlb; an2b§ annb:z
A A o
®101 000 001 100 aub
ldsb®110 000 Id; 010 100 ayb
001 00O 001 000 azyb;
100 100 100 100
Zez; 010 111B —»7e; 010 1118
001 001 001 001
Zey Ze Id3 Ze; Ze; Id;

33 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

SMITH - Other Uses

Matrix Multiplication

aub;i alzbj% alnb:,}
a21b; a22ba az,b
A-B= @ oo
anlb; an2b§ annb:z
A A . .
001 100 001 1003ub apb
Ids>® 010 100 Id; 000 0 11ayb®anb
001 000 001 00 0azb; apb
100 100 100 100
Ze3— 010 111B —»7e; 010 1118
001 001 001 001
Zey Ze Id3 Ze; Ze; Id;

34 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

SMITH - Other Uses

Matrix Multiplication

a11b a12b2 a1nbn
az1by a22b2 aznb
A-B= @D e
anlb; an2b§ annb:z
A A AB . . o
®001 100 000 101 by apby a;by
Id3] 010 011 Id; 000 011 ayb;® apby® agsbs
@001 000 000 00 1 agb; ajpby asbs
100 100 100 100
Ze3y 010 111B —»7e; 010 1118
001 001 001 001
Zes Zes Id; Zes Ze; Id3

35 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

SMITH- Hermite Canonical form ﬁl

Over/Under-determined systems

e Given Ax =b. A and b is first padded with null rows/cols to get a square matrix
A* and extended column vector b*.

e A* converted to its Hermite Canonical Form H
e Do row operations[A* : I : b*] — [H : G : d]

e Any general solution to Az = b is of the form d + (I + H)z for any z,
— The columns of I + H form a basis for the null space of A

36 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

SMITH- Hermite Canonical form

Over/Under-determined systems

COO0COCOOO =~
(e i e I i e e I)

*

CoOoOOoC OO ~=OO

CoOoOoOoC OO0 CO
COO0OO % %O

*

COoO-=OOCOO O
(==l e = i e R e I J R)
i == == ==l e I e = i

e Upper triangular.

e If h;; = 0, the row must be null

e If h;; = 1, the col must be unit vector

37 Subhadeep Banik

Equation Solvers over GF(2) 1.5.2024

SMITH- Hermite Canonical form

1*00*000
00000O0O0O0
0010*000
0001*000
00000O0O0CO0
00000100
00000010
000000O01

Over/under-determined systems

e The SMITH circuit alone is insufficient.
e Other operations are required

e Depth is no longer constant (OPEN PROBLEM)

38 Subhadeep Banik

Equation Solvers over GF(2) 1.5.2024

Quadratic Systems

39 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

Quadratic Systems [, 7] B8

e Solving degree d > 2 equations is NP-complete.

e Hardness of solving quadratics leveraged to construct PKC's.
— HFE, QUARTZ, UOV, SFLASH etc.

e Quadratic over GF(2) has a maximum of S =1+ n+ (}) non-zero coefficients:

P: c+ a1z +asxs + -+ apTy + 0122172 + 137173 + 0 Q1,0 Tn—1Tn

e Evaluating one poly over one point needs approx S bit-ops.

40 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

Standard Exhaustve search

When d = 2, m equations, n variables

e Quadratic over GF'(2) has a maximum of S =1+ n+ (}) non-zero coefficients:
P: c+ arxi +agwe + -+ anTy + 127172 + 0137173 + - A1 nTn—1Tn

e Evaluating one poly over 2™ point needs approx S - 2™ bit-ops.
e Half of them are roots of P

— Evaluate them 27! over the next polynomial.

— Total of S - 2"~ operations.

e Third equation needs S - 2"~2 operations and so on ...

Comp = 2" - S+§+%+~~ ~ 52" = 0(n%2")

e Roots are points that are zeros that survive till the end.

41 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

Fast Exhaustve search [BCC+10/BCC+13]

® Use Gray codes: g; =i ® (i > 1).

® Gray codes of successive integers differ by only 1 bit.

go = 000
g1 = 001
g2 = 011
gs = 010
g4 = 110
gs = 111
ge = 101
g7 = 100

® We traverse the input space of f in a Gray code manner.

® From knowledge of f(g;): we can evaluate f(g;4+1) efficiently without having to
evaluate the entire function.

v

42 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

Taylor Expansion @I

The ldea

—,

e f(go) = f(0) is just the constant term of f.

e ¢ is the bit-position where g; and g;4 differ
— Let's say we already have the value of f;(g;)

Flgien) = flg) @ 2L (g)). (1)

6.’Et

e Here (;% is the 1st order derivative of the function f at the point x;.

e For example if f = x1x0 ® x3 B 12475,
Sf _ Sf _ Sf _
— 3oy — T2 @ r4xs and da; = T 5a; = 1 etc.

e Derivative has degree one less than f and is easier to compute.

43 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

Taylor Expansion @I

o If f=x120@ 23D 124 D 5,
Sf _ Sf _ Sf 1 Of _ Sf _
= sar = T2D and 5oy =1 5an = L 5ar =21 and 5an = L.

e If original is quadratic derivatives are linear!!
*f f
— =1, =0 etc
dT1T2 _69:1?:3
— Second derivatives are constant..

e Start with f(00000) = 0, next we find f(g1) = f(00001)

_ of
£(00001) = £(00000) & =

(00000) = 0 ® 2 + ®x4|o0000 = 0

e Then f(g2) = f(00011)

£(00011) = f(00001) & %(00001) =0® 2100001 =1
2

e Each next step takes evaluation of linear equation

v

44 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

Efficient Exhaustive Search for solutions over I, ﬁl

Main Theorem

All the zeroes of a single multivariate polynomial f in n variables of degree d can
be found in essentially d - 2" bit operations (plus a negligible overhead), using n4~*
bits of read-write memory, and accessing n¢ bits of constants, after an
initialization phase of negligible complexity O(n2?).

® You need to pre-compute all derivatives.
® Precomputation needs time and energy and space.
® Precomputation required for each new equation system.

® \Works best if d = 2 or lower.

45 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

Systems of arbitrary degree

46 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

Construct Truth tables @I‘*‘"‘"
Truth Tables

xx1x2| Po| P1| P2 |ee el Py \/Pi

000 0| 1] 1 0 1

001 1] 0] o0 1 1

010 0| 1|1 1 1

011 1| 1|0 0 1

100 0| 0] o 0 0 Root=100
110 0| 1|0 1 1

111 0| 1|1 0 1

® Evaluation of a function at all points of its space. How can they help?

47 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

Mobius Transform

Mabius Transform

® Given the algebraic equation of any n-variable Boolean function, how to evaluate
it over all the 2™ points of its input domain (i.e. find truth table) ?

® Given truth table of a Boolean function how to deduce its algebraic equation ?
® Answer to both the above is Mdbius Transform.

® |t is a linear, involutive transform that does both the above.

® Requires n - 2"~ ! bit-operations.

48 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

Mobius Transform @
xg X1 Xp ANF(f) Truth Table(f)

\
I\

]

<
U

1\
o
\J

-0 OO0 O
O O O O
_O O O O
[Qb—lb—looci—‘b—l]
%
O ek O OO =
J\/
]
COoOO KR KR KRR

\/\J\ﬁ

[OQ'—'HOD—IOD—I

AD
NN

f:1+X0X1+X2+X0X2

Figure: Mobius transform on f =1 ® xgx1 ® w2 © Tox2. The blue shaded
component represents one butterfly unit.

Salient Points

® Note we have lexicographical indexing.

®ts=1= 6= (110)y = the ANF contains the zoxr; = 2} - 1 - 29 term.

49 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

Mobius Transform @
xg X1 Xp ANF(f) Truth Table(f)

\
I\

]

<
U

I\
o
\J

- OO0 O
O O O O
_O O O O
[Qi—lb—lcoci—‘b—l]
%
O ek O e OO ke
J\/
]
COoOOoO R KHKHRKH

\J\J\ﬁ

[COHHDI—IOD—I

AD
NN

f:1+X0X1+X2+X0X2

Figure: Mobius transform on f =1 ® xgx1 ® x2 B Tox2. The blue shaded
component represents one butterfly unit.

Salient Points

e n, stages and 2" ! xors per stage.

® |nvolutive: the same operations on ANF will give back TT.

50 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

The Mathematics

® If ¥ = [vg,v1,...,Van_1] be the truth-table of f (note v; = f(7)).
o If & = [ug,uq,...,usn_1| be the ANF of f.

® Then it is well known that
v=M, U

® Note M = m; is such that

my; =1 if 727 and 0 otherwise.

® Eg 100 =< 101, but 011 A 100 since 011 exceeds 100 in the last 2 bit-locations.

51 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

The Mathematics @ I

® M, is well studied in literature: Lower triangular + Involutive.
® Since M,, = M, !, both & = M, - ii and @ = M,, - ¥ hold.

1
1
the matrix tensor product.

® Define M, = { ﬂ then for all n > 1, we have M,, = M7 ® M,,_1, where ® is

1000000 O
11000000
10100000
11110000

Ms=11 0001000
11001100
10101010
111111 1 1]

52 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

Exponential circuits: The circuit Expmobl @

xg X1 Xp ANF(f) Truth Table(f)
0 0 0 1 1 1 1
0 0 1 1 1 1 \@ 0
01 0 0 \ 0 P— 1 1
0 1 1 0 —%{}r» 0 —é— 1 A(—B—» 0
1 0 0 0 P— 1 1 1
1 01 |1 S 0 0 A@—» 1
1 1 0 1 \&j 1 Q 0 ~ |0
1 1 1 (] $H— 0 H— 0 &, 0

f:1+X0X1 +X2+XOX2

Figure: Mobius transform on f =1 ® xgx1 ® x2 B Tox2. The blue shaded
component represents one butterfly unit.

® Huge combinatorial circuit that stacks the stages one by one.

e Calculates in one single clock cycle: n - 2"~! xor gates.

53 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

Exponential circuits: The circuit Expmob2 @

xg X1 Xp ANF(f) Truth Table(f)
0 0 0 1 1 1 1
0 0 1 1 1 1 \@ 0
01 0 0 \ 0 P— 1 1
0 1 1 0 —%{}r» 0 —é— 1 A(—B—» 0
1 0 0 0 P— 1 1 1
1 01 |1 S 0 0 A@—» 1
1 1 0 1 \&j 1 Q 0 ~ |0
1 1 1 (] $H— 0 H— 0 &, 0

f:1+X0X1 +X2+XOX2

Figure: Mobius transform on f =1 ® xgx1 ® x2 B Tox2. The blue shaded
component represents one butterfly unit.

® Round based circuit: One stage in one clock cycle.

e Calculates in one n clock cycles: 2"~1 xor gates + Register of 2" bits.

54 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

Exponential circuits: The circuit Expmob?2 @I

1 ‘f)

\ \
o [,
O ,
O T Lle X
O TR e ,
LR T ,
L&Y ,

& \J) \ J

B, T Register

Figure: Round based Circuit.

o, (22) =z, and 7,2z +1)=2""1+2 forall 0<x< 27!

e If P, is the permutation matrix for 7, it can be shown M,, = (P, - B,,)™.

55 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

Results (Nangate 15nm Open Cell Library) L]

56

6 10 1,000

-+~ Expmob2 -+ Expmob1 -+~ Expmob2 - Expmob1 1400} - Expmob2 -s- Expmob1
g 800 1,200
- z 3
4 =1.000
& 5 2
<, £ > 500
g , '; 10 g 600
s 100
. 200
200
0 6 7 8 9 10 11 12 13 1 15 0 5 6 7 8 9 0 11 12 13 115 0 6 7 8 9 10 11 12 13 1M 15
n n n
(a) Area (b) Time (c) Energy

Figure: Synthesis results for Expmobl and Expmob2 circuits

Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

Degree Bound Functions

Polynomial number of Coeffciients

® ANF of Linear function: n + 1 coefficients.

* ANF of Quadratic function: (%) +n + 1 coefficients.

® ANF of Degree d function: (fd) = Z?:o (1) coefficients € O(n).

® Challenge: With a register of size (ﬁi) can we compute the transform?

57 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

Take a look back

%

Truth Table(f)

XQ X)X AO AtOp
0 0 0 1 1 1
0 0 1 1 1 1 E
01 0 0 0 1
011 o 0 1 NP
1 0 o0 0 1 1

s D
1 0 1 1 0 0
1 1 0 1 \&j 1 & 0 -
111 o[Bo 0 P

f:1+x0x1+x2+x0x2

Abottom

C O MO MFOM

Figure: Round based Circuit.

® First stage Ag — vectors Aiop and Apottom.

® Aiop is actually ANF vector for f(0,x1,x2) (in n — 1 variables!!)

® Apottom is actually ANF vector for f(1,z1,22) (in n — 1 variables!!)

® Recursively apply Mobius Transform to these smaller vectors

58

Subhadeep Banik

Equation Solvers over GF(2)

1.5.2024

Mobius Transform with Polynomial Space [Din21] L2

Algorithm 1: Recursive Mébius Transform

Mébius (Ao, n, d)

Input: Ap: The compressed ANF vector of a Boolean function f
Input: n: Number of variables, d: Algebraic degree

Output: The Truth table of f

/* Final step, i.e. leaf nodes of recursion tree */

if n=d then
Use the formula B = M,, - A to output partial truth table B.

/* Use either Expmobl/Expmob2 to do this */
end
else
Declare an array T of size (”@1) bits.
/* Compute the 2 operations of the butterfly layer */
Store 1st butterfly output i.e. Atop in T (requires no xors).
Call Mébius (T,n —1,d)
Store 2nd butterfly output i.e. Apottom in T' (requires some xors).
Call Mébius (T,n —1,d)
end

59 Subhadeep Banik Equation Solvers over GF(2)

Recursion tree @

(n—d) levels
(n,Jd) coefficients | Ag

A

Apottom

[(n2.4d)

VANRVANEVANENIAN
0] o))

[(21d] [(24d)] [(v21d)

YOOo!oo 0o 00 00 0d gd o™

(2"9) leaf nodes

Figure: Recursion tree for the Mébius Transform algorithm. The blue shaded
component roughly represents one arm of the butterfly unit.

® The Tree requires Depth first Traversal
® |In Software this requires context switches, every time we traverse one level down.

® Mapping to hardware non trivial.
60 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

Circuit Sketch Polymobl @ I~

L (n,!d) coefficients I

(n-d)

Levels S[1]

[}
[] Partial
[] Truth

Table
—

Expmobl

Figure: Hardware architecture Polymobl for the Mébius Transform algorithm.
The blue shaded part roughly represents one arm of the butterfly unit.

® Primitive attempt to map algorithm to hw: can this work ?

® Each level needs own storage of size (”@i)

® Task 1: Can we prove the space requirement is O(n?+1)??
61 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

Proof @IN
e We need to prove the following:

— [(n—1

Z () nd+1)'

To prove this we make use of the hockey-stick identity [?] which states that
m 2 (™ = ("F]). Note that expanding out S(n,d) we get

m=d \d d+1
) + () + -+ @) +
" o+ oD+ o+ () +
S(n,d) =
(D) + @D o+ ()
@ 4 () o+ o+ O

62 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

Proof (contd) LB
e Applying the hockey-stick identity on each column we get

St.d) < (7h) + (5 + o+ (1)

Using mathematical induction it is easy to prove the hypothesis

P(d) : ?:0 (M) < n®, for all d > 2, n > d. The base case for d = 2,
amounts to n(n —1)/2 +n + 1 < n? = n? > n + 2, which holds for all
n > 2. Taking P(d) to be true we have

d+1 n n
P(d+1):z<i/> <nd+ <d+1>

=0
d+1
d n d n d+1
< = 1 — | <
T ar " < +(d+1>!> "

Therefore we have S(n,d) < (n + 1)%*!, from which we can conclude it is
O(nd+1).

63 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

Circuit Sketch Polymobl @ I~

L (n,!d) coefficients I

(n-d)

Levels S[1]

[}
[] Partial
[] Truth

Table
—

Expmobl

Figure: Hardware architecture Polymobl for the Mébius Transform algorithm.
The blue shaded part roughly represents one arm of the butterfly unit.

® One reg of size (ﬁi) for Ag, but only one reg of size (”Jdl).
® If level 2 stores Aiqp, it must preserve this till its entire left sub-tree is executed.

® Only then overwrite to Apottom-

64 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

Circuit Sketch Polymobl @ I~

L (n,!d) coefficients I

(n-d)

Levels S[1]

[}
[] Partial
[] Truth

Table
—

Expmobl

Figure: Hardware architecture Polymobl for the Mébius Transform algorithm.
The blue shaded part roughly represents one arm of the butterfly unit.

® Multiplexer select signals control the flow.
® 3:1 multiplexer — Either preserve state or overwrite with A¢qp/bottom

® However only 2:1 mux is sufficient.

65 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

A bit of notation

(n—d) levels

A (n,ld) coefficients | f(xq,x1,X2,...)
[(1id)]f0..) [(1ld)]f@..)

£(0,0,., £(0,1,..) £(1,0,.. 1,1,..)

[(24d] [(24d] [(20d)] | (’n/z\id)l

D [] D (] 10
£(0.0,0...) £(0,0.1,..) £(0,10...) (0.1,1g)f(1.0.0,.)f(1.0.1...) f(11,0,.)f(1.1,1...)

: :
\

QU0 0o 0t 0o 0ogd go o

(2"9) leaf nodes
Figure: Hardware architecture Polymob1l for the Mébius Transform algorithm
The blue shaded part roughly represents one arm of the butterfly unit

® Every level sets one bit in the function argument

66 Subhadeep Banik

Equation Solvers over GF(2) 1.5.2024

A bit of notation

(n

4

—d) levels

A

0]

LY

(n,ld) coefficients | Ag | <depth<n-d

[

Al2]goo Al2lo1o Al2l1g) Al2li10 .
[(21d) [(v2dd] [(v20d] [(n2a) "d bits

8y ity e o

AlBlogoAlBlgo1 Allo10ABlo11@ Al3l100ABl101 AlBl110ABII1L
[)

(r14d) Allggo [(nLid) | Altligo

00 4y oo DD 04 o g

(2"9) leaf nodes

Figure: Hardware architecture Polymobl for the Mébius Transform algorithm.
The blue shaded part roughly represents one arm of the butterfly unit.

® | et us label each ANF as A[depth]pits

67

Subhadeep Banik

Equation Solvers over GF(2) 1.5.2024

A bit of notation

L (n,d) coefficients

|> (n-£,d) A[ﬁ]b at time t
Y [}

L (n-¢-1,1d) A[/+1], at time t+1

[
[J Partial
[J Truth

(d.1d) Expmobl Table
—

Figure: Hardware architecture Polymobl for the Mébius Transform algorithm.
The blue shaded part roughly represents one arm of the butterfly unit.

68 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

A bit of notation

L (n,ld) coefficients I
[]
[
[
L (n-0,d) | A4, at time t

(u:=n-d)
[J
(] Partial
[Truth
Table

Expmobl
L (dld) —

Figure: Hardware architecture Polymobl for the Mébius Transform algorithm.
The blue shaded part roughly represents one arm of the butterfly unit.

69 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

A bit of notation ﬁlm

L (n,ld) coefficients I
[J
[]
[
L (n-0,1d) | Al at time t
]

Sl

L (n-(-1,1d) | A[€+1]b+s[€]t~2“*f at time t+1

[]
[Partial

[J Truth
Table
L (d.d)

70 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

Simulation n =5,d = 2

(c) t=2

L Al0loo

— S[0]s=0 S[0]s=0
‘ S[1]5=1 S[1]5=0
———
ARlio
¥ I I
— S[2]=1 S[2]s=0 — S[2]e=1
(e) t=4 (f) t=5 (g) t=6

71 Subhadeep Banik

Equation Solvers over GF(2)

L Al0Joo

s[0]s=1
L Alllioo

IIIJ

S[1]5=0
e e——
I
S[2]:=0
-—— .
(d) t=3

L AlO0Jooo

s[0};=0
L Alllooo

IIIJ

S[1l,=0
—
I
s[2l,=0
(h) =7
1.5.2024

Convert to Set of Equations

tle=0]r=1 | =2 | (=

00 0 0 0

1[0 15000 | 2-S[o S0

210 4-5[0]; | 4-5[0]o+2-S[1] 2. S[o + S2I1

3]0 4-80], | 4-8[0]i+2-S[1s 4-S[0)o +2- S[1]s + S[2:
410 4-5[0]5 |4-S[0]2+2-S[1s |Y4-S[0+2-S[1]+ S[2]3
510 4'5[0]4 \\4'5[0]3—1—2'5[] 4. 5[0]2—1—2-5[1}3—}—5'[2}4
6|0 4-5[0]5 |Y4-S[0]4+2-S[1]5 | 4-S[0)s+2-S[1]s+ S[25
710 4-8[0g |4-S[0)5+2-S[1]g | 4-S[04+2-S[1]5+ S[2]s

o Left Column needs to be 0,1,2,3,...7

e Solve the integer equation system: look for solutions in {0, 1}

72 Subhadeep Banik

Equation Solvers over GF(2) 1.5.2024

General Case (u:=n-d)

Slu — 1] =

2:Su—2]p + Slu—1] =

2° - S[jlo o + Slu—1]; =

2471 5[0]o + 272 sy + o+ 28-Sl + o + Su—1]y—1 =
2~ 1. S[0]y + 2472 . 5[1]» + o4 20 Sl + .- + Slu—1]u -
2471 S[0lgu_yo1 + 2" 2 S[lgu_y 4 oot 20 Sh]sqou_n + - + Slu—1lau_y =

e Solve the integer equation system: look for solutions in {0,1}
e Does Solution exist ? Is solution implementable ?

73 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

-

741

u—+1

2% — 1

General Case (u:=n-d)

S[u — 1]o =1
2.S[u—2]g + S[u—1]1 =2
2% - S[5lo + o + Shu—1]; =i+1
qu—1 S[0lo 4 oou—2. S[11 4+ o4 21: - S[41; + o + Slu—1]y_1 = u
2u=1. 500]; + 2¥72 . 5[1], + oot 20 S + o + S[u— 1]y =u+1
2U" 1 S[0)gu _yy + 2472 S[Agu_y oo+ 20-S[]_iiou_g + co- + Su—1]gu_s =2%—1

e Look at the i-th column shaded in green (note j = u — 1 —4)
e S[j]t is the i+ 1-th Isb of (i +1),(i+2),..., i.e. the (i+1)-th Isb of ¢ +i+1.

74 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

General Case (u:=n-d)

Slu —1]o =1
2-S[u—2]0 + S[u—1] =2
2% - S[jlo + e + S[u—1]; =i41
2"~ 1. S[olo + 2472 50] + ot 28 5[l + o + Su—1lu_1 =u
24—1. 500]y + 2%=2. 39[1], + oot 20 Sl 4o + S[u— 1]y =u+1
2u L S[0lgu 1+ 2472 S[Ugu_y + oo+ 20-S[] shou_o + - + Su—1]gu_g =2%—1

e A wu-bit decimal up-counter for the variable .
e A series of u incrementers to generate t+1, t+2,...,t+ u.

75 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

Circuit is implementable in logarithmic depth @

X Xji_] eee an e Xn3+1 xn3 e xn2+]_ xn2 cee xn1+]_ xnl xnl—loo- X2 X1 Xp

| 0 1 0 1 0 1 0 1 0 0 0 O
1
L2 z, Z3Xnyi1 23 Z5Xny 11 2, 2%z T X XoX1Xg XiXo Xp

Carry outs

Figure: Visual representation of the addition ¢ +1i 4+ 1

® Having the whole incrementer circuit is unnecessary.
® We are only interested in (i + 1)-th Isb of ¢ +4 + 1.
® The expression is z; ® z4 HZ_;%H Tk.

® Can be implemented using 2log, u depth.

76 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

Polysolvel

—3"

f;)
b
Polymob1 D LA

27— 27 bits
OR Network

Priority Encoder Root

Figure: Hardware Solver Polysolvel

Critical
path

o After OR-ing, Priority Encoder gives the location of 1st 0 in the table.
e The solver will extract one root per partial truth table.
e Note large critical path !!

77 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

Polysolve2

Polymobl

Expmobl

24 — 24 bits

Reg 1

gig g o
A)
-

OR Network

Root
Priority Encoder

Figure: Hardware Solver Polysolve2

e Pipelining reduces the length of critical path.

78 Subhadeep Banik Equation Solvers over GF(2)

1.5.2024

Polysolve3

Expmobl

27 — 27 bits

Reg 1

OR Network
Reg 2 et
= Freeze
Root

Decoder

I

Priority Encoder ’—L’
; j OR

79 Subhadeep Banik

f1 f2
Poymoblm m LA [+

Example

If d = 4, and the OR of the truth tables is
Tp = 1011 1111 1111 0111

e At 7 = 0 Penc outputs 0001

e Decoder op Do = 0100 0000 0000 0000
ey =TyV Dp=1111 1111 1111 0111
e HW(T1) = HW(Tp) + 1, and is written
back to Reg2.

e At 7 = 1 Penc outputs next root 1100
e We have D; = 0000 0000 0000 1000.

o> =T Vv Dy =1111 1111 1111 1111
which is now the all one string.

Equation Solvers over GF(2) 1.5.2024

Polysolve3

Problem

The critical path of priority encoder+ decoder increases as d increases
e Task 2: How to reduce it ?

80 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

Polysolve3 @ I

Problem

The critical path of priority encoder+ decoder increases as d increases
e Task 2: How to reduce it ?

Solution

The Enc+Dec basically flips last 0 from a string
Other solutions exist n OR n + 1 77

n: 1100 0101 0111
+1

n+1: 1100 0101 1000
n: 1100 0101 0111

nVn41: 1100 0101 1111

81 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

Polysolve3 @ I

The critical path of priority encoder+ decoder increases as d increases
e Task 2: How to reduce it 7

Solution

e In stead of Encoder followed by Decoder, we can do Encoder and n OR
n + 1 block in parallel.

e Simultaneously fishes root+ flips zero.

82 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

Polysolve3: Brent Kung adder @I

giPi

)/ O o opn.

Generate/propagate

®g;=a; b;andp; =a; Db,
e Go, Py = go,po and G, P; = (gi,pi) o (Gi—1, Pi—1)
o (z1,y1) 0 (w2,y2) = (1 V (y1 - T2),¥1 - Y2).

83 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

Polysolve3: Brent Kung adder @I

gipj
O o opn.

@

Generate/propagate

e Has logarithmic depth
e Can be used with carry-select approach
e TO get faster adders for arbitrary d.

84 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

Time taken

Problem

e Plain Circuit takes 2"=% cycles.
e Task 3: How much time does this take if there are R roots 7

85 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

Time taken @ E

Problem

e Plain Circuit takes 2"=% cycles.
e Task 3: How much time does this take if there are R roots 7

Solution

e If partial truth table has r; = 0 roots: no additional cycle.

o If partial truth table has r; = 1 roots: one additional cycle.
e If partial truth table has r; = 2 roots: two additional cycle.
e Therefore 1 + r; cycles per partial TT

on—d

Sl =243 r;=2""+R
i=1

86 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

Energy Efficiency

Woasteful Computation

e Suppose we have 50 equations in 50 variables.
— The common solution of 1st 10 equations is 100.
— Evaluating Mébius Transform for the remaining equations=-Evaluating 40
equations at 2%° points each.
— Evaluating 40 equations at 10 points is sufficient !!!!

e We found energy efficient solution for this.
e The idea is to filter any common root of first 10 eqns using Dot-product circuit.

87 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

Energy Efficiency

Woasteful Computation

e First run Mobius Transform on a small number of p equations.
— Find the common solution set A of 1st u equations.
— The remaining equations has to be checked only on above set

e So how do we this?
e Each r € A has to be evaluated on m — p equations.

88 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

Tools

Circuit components

e Root expander: RE(n,d):{0,1}" — {0, 1}(fd).
— Eg.RE(4, 3) over the vector (xg,x1,x2,23) = (1,0,1,1)
— const value= 1, zgz; =0, xpx2 =1, zoz3 =1, 2122 =0, 2123 =0,
ToXg = 17 ToX1To = O,LL’O,’E1.7J3 = O7 ToXaly — 1, L1X2x3 = 0.
— The expanded root r=1111 0001 110
— Total hardware overhead is (|,;) —n AND gates.
e Dot-Product: Eg f = 1D zg P 22 ® 201 © T223.
— Vector Description v=1011 0001 001.
— The dot-product r - v =0, equals f(r).
— () AND gates and (/;;) —1 XOR

89 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

Circuit

90

Subhadeep Banik

A i
Priority Encoder }J—W:T

.

PolySolve3 instance with ;. equations

f
LHT' Dot Product
f
142
R — Dot Product OR
[J Tree
°
[]
f
*’, Dot Product
d Root
Expander J

Root

Root Valid

Equation Solvers over GF(2)

1.5.2024

Time taken @ I

Problem

e Plain Circuit takes 2"~% + R cycles.
e Task 3: How much time does this take if there are y instances 7

91 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

Time taken

Problem

e Plain Circuit takes 2"~% + R cycles.
e Task 3: How much time does this take if there are y instances 7

Let fi, f2,..., fu beiid balanced Boolean functions of n variables each. Then the
expected cardinality of the solution space of the system of equations

fi=fo==fu=0is2"".

e So R+ 2" % =2n=1 4 974 cycles on average.

92 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

Energy

Energy (1J)

80

70

60

40

30

20

10

2 4 6 8 10 12

Figure: Energy consumption for varying u for n = m = 20. The colored dashed
lines show the energy consumed in the Polysolve3 circuit for the corresponding

equation systems.

93

Subhadeep Banik

Equation Solvers over GF(2)

1.5.2024

Depth Bound trees

Algorithm 2: Recursive Mobius Transform

Mébius (Ao, n, d)

Input: Ag: The compressed ANF vector of a Boolean function f
Input: n: Number of variables, d: Algebraic degree

Output: The Truth table of f

/* Final step, i.e. leaf nodes of recursion tree */

if n=d then
Use the formula B = M, - Agp to output partial truth table B.
/* Use either Expmobl/Expmob2 to do this */

end

else
Declare an array T of size ("i_dl) bits.
/* Compute the 2 operations of the butterfly layer */
Store 1st butterfly output i.e. Atop in T' (requires no xors).
Call Mébius (T, n — 1,d)
Store 2nd butterfly output i.e. Apottom in T’ (requires some xors).
Call Mébius (T,n —1,d)

end

94 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

Depth Bound trees

Algorithm 3: Recursive Mobius Transform

Mébius (Ao, n, d)

Input: Ag: The compressed ANF vector of a Boolean function f
Input: n: Number of variables, d: Algebraic degree

Output: The Truth table of f

/* Final step, i.e. leaf nodes of recursion tree */

if n=h>d then
Use the formula B = M, - Agp to output partial truth table B.
/* Use either Expmobl/Expmob2 to do this */

end

else
Declare an array T of size ("i_dl) bits.
/* Compute the 2 operations of the butterfly layer */
Store 1st butterfly output i.e. Atop in T' (requires no xors).
Call Mébius (T, n — 1,d)
Store 2nd butterfly output i.e. Apottom in T’ (requires some xors).
Call Mébius (T,n —1,d)

end

95 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

Depth boundedness

(n—h) levels
A

(n,ld) coefficients | f(xq,x1,X2,...)

[(1id)]f0..) [

/\) £(1.0,.

(2.9 l(

l(1d)] [(nud)]
A A

(n-14d)]F(1..)
(0,0,
o

£(0.0.0...) f(0.0.1,..

f(()l())fl)l].)f(lOO)6(101)fll() 1111 .)
3 .
:

Yoo

(| I N O N [D)D |

(2" leaf nodes
Figure: Hardware architecture Polymobl for the Mébius Transform algorithm
The blue shaded part roughly represents one arm of the butterfly unit

® Number of levels shrink to n — h from n — d

® Faster computation: 2" # 4 2n—d _ 9n—p 4 gn—h
96

Subhadeep Banik

Equation Solvers over GF(2) 1.5.2024

Depth boundedness

(n—h) levels
A

(n,ld) coefficients | f(xq,x1,X2,...)

[(1id)]f0..) [

/\) £(1.0,.

(2.9 l(

l(1d)] [(nud)]
A A

(n-14d)]F(1..)
(0,0,
o

£(0.0.0...) f(0.0.1,..

f(()l())fl)l].)f(lOO)6(101)fll() 1111 .)
3 .
:

Yoo

N | I I o |

(2" leaf nodes

Figure: Hardware architecture Polymobl for the Mébius Transform algorithm
The blue shaded part roughly represents one arm of the butterfly unit

® Downside Expmobl, encoder needed over h > d bits
® Increases the critical path

97 Subhadeep Banik

Equation Solvers over GF(2) 1.5.2024

Energy reduction

40 T

--n=20,d=2
351 —--n=20,d=3 B

30l —--n=20,d=4 B

25 | N

20 |- N

4NN :
e~

Energy (uJ)

o
I

Figure: Energy decrease with increasing h for new solvers for n = 20, h = u. The
colored horizontal lines indicate the best possible energy consumption for the full
depth circuit for the same equation system.

98 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

SAKURA-X

Figure: SAKURA-X

Proof of Concept

e SAKURA-X mainly built for side-channel experiments, limited computational
power.

e We could solve quadratic equations of upto 50 variables in 8 hours.

e TODO — Implement on an FPGA cluster and solve upto 100 variables.

99 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

Conclusion

® Given m equations in n variables over GF(2).
e Asymptotically, all the solutions can be found using a circuit of area o< m - n®t2.

® This is not energy-efficient however: Mobius Transform does a lot of redundant
computations.

e Circuit for energy efficiency also proposed.

100 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

THANK YOU

101 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

	Introduction
	Circuits for Cryptanalysis
	Degree two Systems
	Möbius Transform
	Exponential Circuits for Möbius Transform
	Polynomial Circuits
	Energy Efficiency
	Energy Efficiency

