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Sustainable Cryptanalysis
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e The idea of making dedicated machines to attack ciphers is not new.
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Source: Wikipedia
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Sustainable Cryptanalysis

e Why should we care to make circuits ?
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Source: Wikipedia
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In Software

e Most general purpose CPU's have the following structure
[A] A processing unit having logic gates and registers
[B] A control unit having an instruction register and a program counter
[C] Primary memory that stores data and instructions
[D] Secondary memory, usually an external mass storage.

e Any computational step of the algorithm
— First broken down into a sequence of instructions
— Resides in the control unit.
— Fetches data from the primary/secondary memory,
— Processed in the processing unit.
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In Software @ I

e Dedicated Circuit
[A] Collection of logic elements
[B] Assembled specifically for the given task
[C] Thus executes them with much greater efficiency.
[D] Faster and more energy efficient.

e Gaussian Elimination of a 656 x 656 matrix
— Dedicated circuit [SMITH, Bogdanov et al. 07 |
— Requires 86 ms.
— On a Linux 800 MHz PIIl PC would take around 40 minutes,
— We can execute computationally heavy tasks on such circuits.
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Introduction: Solving an Equation System @

e Given m eqns P1, Py, ..., P, of n variables over GF(2) of max degree d.
— Usually m = n, sometimes m > n
— Each equation is a multivariate polynomial over GF(2)
— The algebraic degree d is usually small.
— Task: find a common root: r € {0,1}" such that P;i(r) =0, V i.

e Problem arises in many cryptographic contexts.
— Block ciphers with low multiplicative complexities like LowMC
— Given single pt/ct: solving low degree polynomials.
— Signature schemes like UOV.
— Cryptanalysis: solving quadratic polynomials over GF(2).
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Linear Systems
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If Equations are Linear (d = 1)

LSE (m equations,n variables)

e Typical LSE

a1121 + @122 + -+ + a1pTy = by

a21%1 + a22T2 + - -+ + a2p Ty = by

Am1%1 + AmaZ2 + - + ApTn = bm

e Equivalently AZ = b

e Linear equations can be Solved by Gaussian Elimination (GE) efficiently.
e GE takes n> operations in the worst case.
e Given a linear system of form AZ = b
— Convert to equivalent system U - & = o, where U is upper-triangular.
— Done by applying elementary row operations.
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Step 1 Step 2 Table T
A
q |
All 2% linear
G = combinations of
3k - the yellow rows
\
f Step3

Add T[] to blue rows

Popular in SW
e used in computer algebra packages like SAGE.

e |t is interesting to see how far this cam be applied in HW
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Gaussian Elimination

Gaussian_Elimination(A, n)
Input: Matrix A € {0,1}™*" : Input matrix

for each column k=1 — n do

s:=k;

while a,, = 0 do
| s:=s+1;

end

Swap row aj, with row ag;
for eachrowi=1 — n do
if ¢ # k and a;; = 1 then
| G5 i= Gij D ag;
end
end

end
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SMITH - Architecture @ I

e GE requires 2 operations: row addition/row swap

10010110

00010101

11001010

00110101

11000101 e Pivot is the top-left element of unprocessed
00110001 rows.

01011011

10001101

Pivot
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SMITH - Architecture @ I

e GE requires 2 operations: row addition/row swap

10010110

00010101

01011100

00110101

01010011 e Column sweep once pivot is fixed.
00110001

01011011

0001101 18-

Pivot
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SMITH - Architecture @ I

e GE requires 2 operations: row addition/row swap

10010110
00010101
0101110 0<|I>
00110101
01010011 e Pivot can not be zero. So swap with next
00110001 available row which is unprocessed.
01011011
00011011
Pivot
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SMITH - Architecture @ I

e GE requires 2 operations: row addition/row swap

10010110
01011100
00010101<|I>
00110101
01010011 e Swap is done. Ready for next row
00110001 operation.
01011011
00011011
Pivot
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SMITH - Architecture @ I

e GE requires 2 operations: row addition/row swap

10010110
01011100
00010101
00110101
00001111 e Second column is cleared.
00110001
00000111
'oo0o011011
Pivot
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Circuit Issues

e Assume each element is stored in a single flip-flop.

1

COOCOCOOO =
O=O=OMOO
OCOoO=O~=OOO
[ S T G S g g g Y
~_NOOOMO

Pivot

0

16  Subhadeep Banik

COOCO =i pd il

— OO OO -

e

0
1
0
1

o,

e Pivot is ever changing. How to keep track
of it 7

e Can not swap with already processed row...
e How to select next row for swap?
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SMITH - Architecture @ Iﬁm

e Initially both circuit and state are same
e Two additional registers Vecl and Vec2
e To keep track of control flow.

10010110 1 0
00010101 . 0
11001010 0
00110101 0
11000101 0
00110001 0
01011011 0
10001101 0

Vecl

Pivot Pivot
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SMITH - Architecture

e Diagonal flow brings aj; to bottom-left (next pivot shifts to (1,1)!!!)
e The parts in red, blue and orange move accordingly.
e Orange part moves without xor operation/ purple is all zero

0

COoO0COCOOO M
O~ROROMOO
co~O~ROOO
T g g i g g g
-0 00 MO

Pivot
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0
1

0o

1

OCO~OMOMO

COO=OMOO
G G g W g g

1

O-=M~OOOM=O
O OO0 M =

Pivot

-0 O OO
O = O
OO ODOOOO

lmocococococoo|

0
0
0
0
0
0
0
1

Vecl Vec2
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SMITH - Architecture

e Xor rule: New a;; = a;t1, j+1 ® a1, j41 - @411
e Vecl=Vecl < 1 || 1 (last row is processed).
o Vec2=Vec2 < 1 (last row is current row).

10010110 00101
00010101 10111
01011100<|I> 01101
00110101 10100
01010011 01100
00110001 10110
01011011 00110
00011011 00101
Pivot Pivot
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O = O
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Vecl Vec

N
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SMITH - Xor rule

Row operations

1 ais - aq az O (a’12 . a21) ao3 D (CL13 . a21) 0
" a2 @ (a12 : a31) assz O (a13 . a31) ... 0
a21 a2 - A2p
% N .
an2 D (a12 - a an3 D (a3 - a .
Ap1 Gp2 -+ Gpn n2 (all22 nl) n3 (all?)?) nl) o
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SMITH - Architecture [, 7] &3

e Pivot is already at (1,1) and zero — Now row swaps are required
e Instead of row swap, we circularly rotate unprocessed rows till ai; # 0.
e Need to do same operation to the b in AZ = b.

10010110 00101010, ||0]]|0
00010101<|'> 10111000, (|0]|0
01011100 01101010, (|00
00110101 10100110, (|0]|0
01010011 01100010, (|00
00110001 10110110 [|o|]|O
01011011 00110110*<olo
00011011 00101101 1 |1
- V;Ve;
Pivot Pivot
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SMITH - Architecture [, 7] &3

e After one swap pivot is already non-zero
e Ready for next row operation.
e Again we do diagonal movement on unprocessed rows.

0 —

1001011 10111000, |[0f|0
01011100<|'> 01101010, [lo]|0
00010101 10100110, ||0]|0
00110101 01100010, (|00
01010011 10110110, ||0]|0
00110001 00110110 [[of]|0
01011011 00101010"{of|0
00011011 00101101 1 |1
. V;Ve;
Pivot Pivot
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SMITH - Architecture @ |

e After row operation: last 2 cols are cleared.
e Bottom left corner becomes identity.
e Stops when Vecl is all one.

COO0OOCOCOO ==
OCOO0OOCOO~=O
OCOoO=O=OOO
=l = e
_O0O0O~=OO~O
Ot O it ek e
-0 =000
— e - O

® @D

\

~O~OO0OMOO
i O ek O bt el i
O == =000
SO M-

s

o~mocococococo

lmrocoocococoo|
lorcocococoo|

cocooco~ORO
e O e O =
\_-ocoocooo

Vecl Vec

3
<
o
-+
N

Pivot
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SMITH - Swap rule @I

1 a;
a3 ai
a3 a3
a; ai—1

_)
A1 @41
Ai+2 Ai+2
Ai+3 Qi+3
L an i L a?L J
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SMITH - RUNTIME %=

e What is the average Runtime for n x n matrix???
e At least n row xors are required.
e Additional time depends on number of row swaps.

0 —

1001011 00101010, ||0]]|0
00010101<|'> 10111000, (|0]|0
01011100 01101010, (|00
00110101 10100110, (|0]|0
01010011 01100010, (|00
00110001 10110110 [|o|]|O
01011011 00110110*<olo
00011011 00101101 1 |1
- V;Ve;
Pivot Pivot
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SMITH - RUNTIME %=

e If Pivot == 1 (p = 3), no swaps are required (zero additional time)

e After one circular rotate if pivot==1, no further swaps are necessary.

e Thus one additional cycle in this case (p = ).

10010110 00101010, ||0]]|0
00010101<|'> 10111000, (|0]|0
01011100 01101010, (|00
00110101 10100110, (|0]|0
01010011 01100010, (|00
00110001 10110110 [|o|]|O
01011011 00110110*<olo
00011011 00101101 1 |1
- V;Ve;
Pivot Pivot
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SMITH - RUNTIME %=
e If Pivot == 1 after ¢ rotations (p = %tlﬂ), t additional time.
.E:O.%+1.%4_2.%4_...4_15.@4_...%1_

e Every row xor needs one extra cycle on average — 2n cycles.

0 —

1001011 00101010, ||0]]|0
00010101<|'> 10111000, (|0]|0
01011100 01101010, (|00
00110101 10100110, (|0]|0
01010011 01100010, (|00
00110001 10110110 [|o|]|O
01011011 00110110*<olo
00011011 00101101 1 |1
- V;Ve;
Pivot Pivot
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SMITH - Each flip-flop (7] B
e Constant Depth circuit: enables low critical path even as n — oo

e Control signals to figure out which input overwrites the flip-flop
e Use Vecl and Vec2 to design control signals

D.Q. D

rotate Q—)
A
/\
A
row addition

;_ 00 |;

(] oo

28  Subhadeep Banik Equation Solvers over GF(2) 1.5.2024

L
L



SMITH - Use cases

Matrix Square and Full rank

e Stops when Vecl is all one...
e At the end of computation the FF array holds the identity matrix
e Same operations done on b.
e If b* is the final state of b
— 7= b* is the unique solution of A7 = b.

Proof

Original Equation AZ = b

Unique solution to this is # = A~1b

A — I is only possible

— Iff product of all linear operations on A equals A1

Same operations on b gives b— b= A"1p
QED
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SMITH - Use cases ﬁl

Matrix Square and NOT Full rank

e Never Stops — Vecl is never all one...
e At the end of computation bottom part holds the identity matrix
e Does not yield any meaningful solution.
e Additional counter logic required to stop infinite loop
— Stop if counter > # Remaining rows.

inf loop
1001 e e e ( e 000 0 00
0001 ee e g; XX
11 00eee( e 00 0 0 00
e 0o 0 00 ) eeoe e 10000
e 0o 0 0 ) o —Pp eeo e 01000
o 0o 0 0 [ I ) eeo e 00100
0101 ee0e] eeoe 00O01O
1000e e 0] eee 0000O01
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SMITH - Use cases

Matrix Non-Square and Overdefined

e That is m > n, there are more equations than variables.

e The system is solvable iff
( 0 ) - E 0 )
A b
— 7. — Rt

e Again Additional counter logic required to stop infinite loop
— Stop if counter > m — n.

e No solution if for any £ # 0:

0 - {f}
A— 7. b— s
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SMITH - Other Uses

Matrix Multiplication
e Observe the following

I, A 0 I, A A-B
D=\|0 I, B|, D'=|0 I, B
0 0 I, 0 0 I

e Matrix multiplication A - B is possible given 3n x 3n space
e Also observe if

a1 a2 A1n b_}
az1 a3 Q2n by
A= , B=1] .
an1 An2 Ann bn
e Then we have
a11by a12b2 a1nbn
a1, a22b2 aonby,
A-B= . S5 . G- b .
32  Subhadeep Banik
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SMITH - Other Uses

Matrix Multiplication

aub;i alzbj% alnb:,}
a21b; a22b2 aznb
anlb; an2b§ annb:z
A A o
®101 000 001 100 aub
ldsb®110 000 Id; 010 100 ayb
001 00O 001 000 azyb;
100 100 100 100
Zez; 010 111B —»7e; 010 1118
001 001 001 001
Zey Ze Id3 Ze; Ze; Id;
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SMITH - Other Uses

Matrix Multiplication

aub;i alzbj% alnb:,}
a21b; a22ba az,b
A-B= @ oo
anlb; an2b§ annb:z
A A . .
001 100 001 1003ub apb
Ids>® 010 100 Id; 000 0 11ayb®anb
001 000 001 00 0azb; apb
100 100 100 100
Ze3— 010 111B —»7e; 010 1118
001 001 001 001
Zey Ze Id3 Ze; Ze; Id;
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SMITH - Other Uses

Matrix Multiplication

a11b a12b2 a1nbn
az1by a22b2 aznb
A-B= @D e
anlb; an2b§ annb:z
A A AB . . o
®001 100 000 101 by apby a;by
Id3] 010 011 Id; 000 011 ayb;® apby® agsbs
@001 000 000 00 1 agb; ajpby asbs
100 100 100 100
Ze3y 010 111B —»7e; 010 1118
001 001 001 001
Zes Zes Id; Zes Ze; Id3
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SMITH- Hermite Canonical form ﬁl

Over/Under-determined systems

e Given Ax =b. A and b is first padded with null rows/cols to get a square matrix
A* and extended column vector b*.

e A* converted to its Hermite Canonical Form H
e Do row operations[A* : I : b*] — [H : G : d]

e Any general solution to Az = b is of the form d + (I + H)z for any z,
— The columns of I + H form a basis for the null space of A
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SMITH- Hermite Canonical form

Over/Under-determined systems

COO0COCOOO =~
(e i e I i e e I )

*

CoOoOOoC OO ~=OO

CoOoOoOoC OO0 CO
COO0OO % %O

*

COoO-=OOCOO O
(==l e = i e R e I J R )
i == == ==l e I e = i

e Upper triangular.

e If h;; = 0, the row must be null

e If h;; = 1, the col must be unit vector

37  Subhadeep Banik

Equation Solvers over GF(2) 1.5.2024



SMITH- Hermite Canonical form

1*00*000
00000O0O0O0
0010*000
0001*000
00000O0O0CO0
00000100
00000010
000000O01

Over/under-determined systems

e The SMITH circuit alone is insufficient.
e Other operations are required

e Depth is no longer constant (OPEN PROBLEM)
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Quadratic Systems
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Quadratic Systems [, 7] B8

e Solving degree d > 2 equations is NP-complete.

e Hardness of solving quadratics leveraged to construct PKC's.
— HFE, QUARTZ, UOV, SFLASH etc.

e Quadratic over GF(2) has a maximum of S =1+ n+ (}) non-zero coefficients:

P: c+ a1z +asxs + -+ apTy + 0122172 + 137173 + 0 Q1,0 Tn—1Tn

e Evaluating one poly over one point needs approx S bit-ops.
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Standard Exhaustve search

When d = 2, m equations, n variables

e Quadratic over GF'(2) has a maximum of S =1+ n+ (}) non-zero coefficients:
P: c+ arxi +agwe + -+ anTy + 127172 + 0137173 + - A1 nTn—1Tn

e Evaluating one poly over 2™ point needs approx S - 2™ bit-ops.
e Half of them are roots of P

— Evaluate them 27! over the next polynomial.

— Total of S - 2"~ operations.

e Third equation needs S - 2"~2 operations and so on ...

Comp = 2" - S+§+%+~~ ~ 52" = 0(n%2")

e Roots are points that are zeros that survive till the end.
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Fast Exhaustve search [BCC+10/BCC+13]

® Use Gray codes: g; =i ® (i > 1).

® Gray codes of successive integers differ by only 1 bit.

go = 000
g1 = 001
g2 = 011
gs = 010
g4 = 110
gs = 111
ge = 101
g7 = 100

® We traverse the input space of f in a Gray code manner.

® From knowledge of f(g;): we can evaluate f(g;4+1) efficiently without having to
evaluate the entire function.

v
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Taylor Expansion @I

The ldea

—,

e f(go) = f(0) is just the constant term of f.

e ¢ is the bit-position where g; and g;4 differ
— Let's say we already have the value of f;(g;)

Flgien) = flg) @ 2L (g)). (1)

6.’Et

e Here (;% is the 1st order derivative of the function f at the point x;.

e For example if f = x1x0 ® x3 B 12475,
Sf _ Sf _ Sf _
— 3oy — T2 @ r4xs and da; = T 5a; = 1 etc.

e Derivative has degree one less than f and is easier to compute.
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Taylor Expansion @I

o If f=x120@ 23D 124 D 5,
Sf _ Sf _ Sf 1 Of _ Sf _
= sar = T2D and 5oy =1 5an = L 5ar =21 and 5an = L.

e If original is quadratic derivatives are linear!!
*f f
— =1, =0 etc
dT1T2 _69:1?:3
— Second derivatives are constant..

e Start with f(00000) = 0, next we find f(g1) = f(00001)

_ of
£(00001) = £(00000) & =

(00000) = 0 ® 2 + ®x4|o0000 = 0

e Then f(g2) = f(00011)

£(00011) = f(00001) & %(00001) =0® 2100001 =1
2

e Each next step takes evaluation of linear equation

v
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Efficient Exhaustive Search for solutions over I, ﬁl

Main Theorem

All the zeroes of a single multivariate polynomial f in n variables of degree d can
be found in essentially d - 2" bit operations (plus a negligible overhead), using n4~*
bits of read-write memory, and accessing n¢ bits of constants, after an
initialization phase of negligible complexity O(n2?).

® You need to pre-compute all derivatives.
® Precomputation needs time and energy and space.
® Precomputation required for each new equation system.

® \Works best if d = 2 or lower.
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Systems of arbitrary degree
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Construct Truth tables @I‘*‘"‘"
Truth Tables

xx1x2| Po| P1| P2 |ee el Py \/Pi

000 0| 1] 1 0 1

001 1] 0] o0 1 1

010 0| 1|1 1 1

011 1| 1|0 0 1

100 0| 0] o 0 0  Root=100
110 0| 1|0 1 1

111 0| 1|1 0 1

® Evaluation of a function at all points of its space. How can they help?
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Mobius Transform

Mabius Transform

® Given the algebraic equation of any n-variable Boolean function, how to evaluate
it over all the 2™ points of its input domain (i.e. find truth table) ?

® Given truth table of a Boolean function how to deduce its algebraic equation ?
® Answer to both the above is Mdbius Transform.

® |t is a linear, involutive transform that does both the above.

® Requires n - 2"~ ! bit-operations.
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Mobius Transform @
xg X1 Xp ANF(f) Truth Table(f)

\
I\

]

<
U

1\
o
\J

-0 OO0 O
O O O O
_O O O O
[Qb—lb—looci—‘b—l]
%
O ek O OO =
J\/
]
COoOO KR KR KRR

\/\J\ﬁ

[OQ'—'HOD—IOD—I

AD
NN

f:1+X0X1+X2+X0X2

Figure: Mobius transform on f =1 ® xgx1 ® w2 © Tox2. The blue shaded
component represents one butterfly unit.

Salient Points

® Note we have lexicographical indexing.

®ts=1= 6= (110)y = the ANF contains the zoxr; = 2} - 1 - 29 term.
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Mobius Transform @
xg X1 Xp ANF(f) Truth Table(f)

\
I\

]

<
U

I\
o
\J

- OO0 O
O O O O
_O O O O
[Qi—lb—lcoci—‘b—l]
%
O ek O e OO ke
J\/
]
COoOOoO R KHKHRKH

\J\J\ﬁ

[COHHDI—IOD—I

AD
NN

f:1+X0X1+X2+X0X2

Figure: Mobius transform on f =1 ® xgx1 ® x2 B Tox2. The blue shaded
component represents one butterfly unit.

Salient Points

e n, stages and 2" ! xors per stage.

® |nvolutive: the same operations on ANF will give back TT.

50 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024



The Mathematics

® If ¥ = [vg,v1,...,Van_1] be the truth-table of f (note v; = f(7)).
o If & = [ug,uq,...,usn_1| be the ANF of f.

® Then it is well known that
v=M, U

® Note M = m; is such that

my; =1 if 727 and 0 otherwise.

® Eg 100 =< 101, but 011 A 100 since 011 exceeds 100 in the last 2 bit-locations.
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The Mathematics @ I

® M, is well studied in literature: Lower triangular + Involutive.
® Since M,, = M, !, both & = M, - ii and @ = M,, - ¥ hold.

1
1
the matrix tensor product.

® Define M, = { ﬂ then for all n > 1, we have M,, = M7 ® M,,_1, where ® is

1000000 O
11000000
10100000
11110000

Ms=11 0001000
11001100
10101010
111111 1 1]
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Exponential circuits: The circuit Expmobl @

xg X1 Xp ANF(f) Truth Table(f)
0 0 0 1 1 1 1
0 0 1 1 1 1 \@ 0
01 0 0 \ 0 P— 1 1
0 1 1 0 —%{}r» 0 —é— 1 A(—B—» 0
1 0 0 0 P— 1 1 1
1 01 |1 S 0 0 A@—» 1
1 1 0 1 \&j 1 Q 0 ~ |0
1 1 1 (] $H— 0 H— 0 &, 0

f:1+X0X1 +X2+XOX2

Figure: Mobius transform on f =1 ® xgx1 ® x2 B Tox2. The blue shaded
component represents one butterfly unit.

® Huge combinatorial circuit that stacks the stages one by one.

e Calculates in one single clock cycle: n - 2"~! xor gates.
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Exponential circuits: The circuit Expmob2 @

xg X1 Xp ANF(f) Truth Table(f)
0 0 0 1 1 1 1
0 0 1 1 1 1 \@ 0
01 0 0 \ 0 P— 1 1
0 1 1 0 —%{}r» 0 —é— 1 A(—B—» 0
1 0 0 0 P— 1 1 1
1 01 |1 S 0 0 A@—» 1
1 1 0 1 \&j 1 Q 0 ~ |0
1 1 1 (] $H— 0 H— 0 &, 0

f:1+X0X1 +X2+XOX2

Figure: Mobius transform on f =1 ® xgx1 ® x2 B Tox2. The blue shaded
component represents one butterfly unit.

® Round based circuit: One stage in one clock cycle.

e Calculates in one n clock cycles: 2"~1 xor gates + Register of 2" bits.
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Exponential circuits: The circuit Expmob?2 @I

1 ‘f )

\ \
o [ ,
O ,
O T Lle X
O TR e ,
LR T ,
L&Y ,

& \J) \ J

B, T Register

Figure: Round based Circuit.

o, (22) =z, and 7,2z +1)=2""1+2 forall 0<x< 27!

e If P, is the permutation matrix for 7, it can be shown M,, = (P, - B,,)™.
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Results (Nangate 15nm Open Cell Library) L]

56

6 10 1,000

-+~ Expmob2 -+ Expmob1 -+~ Expmob2 - Expmob1 1400} - Expmob2 -s- Expmob1
g 800 1,200
- z 3
4 =1.000
& 5 2
<, £ > 500
g , '; 10 g 600
s 100
. 200
200
0 6 7 8 9 10 11 12 13 1 15 0 5 6 7 8 9 0 11 12 13 115 0 6 7 8 9 10 11 12 13 1M 15
n n n
(a) Area (b) Time (c) Energy

Figure: Synthesis results for Expmobl and Expmob2 circuits
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Degree Bound Functions

Polynomial number of Coeffciients

® ANF of Linear function: n + 1 coefficients.

* ANF of Quadratic function: (%) +n + 1 coefficients.

® ANF of Degree d function: (fd) = Z?:o (1) coefficients € O(n).

® Challenge: With a register of size (ﬁi) can we compute the transform?
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Take a look back

%

Truth Table(f)

XQ X)X AO AtOp
0 0 0 1 1 1
0 0 1 1 1 1 E
01 0 0 0 1
011 o 0 1 NP
1 0 o0 0 1 1

s D
1 0 1 1 0 0
1 1 0 1 \&j 1 & 0 -
111 o[ Bo 0 P

f:1+x0x1+x2+x0x2

Abottom

C O MO MFOM

Figure: Round based Circuit.

® First stage Ag — vectors Aiop and Apottom.

® Aiop is actually ANF vector for f(0,x1,x2) (in n — 1 variables!!)

® Apottom is actually ANF vector for f(1,z1,22) (in n — 1 variables!!)

® Recursively apply Mobius Transform to these smaller vectors
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Mobius Transform with Polynomial Space [Din21] L2

Algorithm 1: Recursive Mébius Transform

Mébius (Ao, n, d)

Input: Ap: The compressed ANF vector of a Boolean function f
Input: n: Number of variables, d: Algebraic degree

Output: The Truth table of f

/* Final step, i.e. leaf nodes of recursion tree */

if n=d then
Use the formula B = M,, - A to output partial truth table B.

/* Use either Expmobl/Expmob2 to do this */
end
else
Declare an array T of size (”@1) bits.
/* Compute the 2 operations of the butterfly layer */
Store 1st butterfly output i.e. Atop in T (requires no xors).
Call Mébius (T,n —1,d)
Store 2nd butterfly output i.e. Apottom in T' (requires some xors).
Call Mébius (T,n —1,d)
end
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Recursion tree @

(n—d) levels
(n,Jd) coefficients | Ag

A

Apottom

[ (n2.4d)

VANRVANEVANENIAN
0] o) )

[(21d]  [(24d)] [ (v21d)

YOOo!oo 0o 00 00 0d gd o™

(2"9) leaf nodes

Figure: Recursion tree for the Mébius Transform algorithm. The blue shaded
component roughly represents one arm of the butterfly unit.

® The Tree requires Depth first Traversal
® |In Software this requires context switches, every time we traverse one level down.

® Mapping to hardware non trivial.
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Circuit Sketch Polymobl @ I~

L (n,!d) coefficients I

(n-d)

Levels S[1]

[}
[ ] Partial
[ ] Truth

Table
—

Expmobl

Figure: Hardware architecture Polymobl for the Mébius Transform algorithm.
The blue shaded part roughly represents one arm of the butterfly unit.

® Primitive attempt to map algorithm to hw: can this work ?

® Each level needs own storage of size (”@i)

® Task 1: Can we prove the space requirement is O(n?+1)??
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Proof @IN
e We need to prove the following:

— [(n—1

Z ( ) nd+1)'

To prove this we make use of the hockey-stick identity [?] which states that
m 2 (™ = ("F]). Note that expanding out S(n,d) we get

m=d \d d+1
) + () + -+ @) +
" o+ oD+ o+ () +
S(n,d) =
(D) + @D o+ ()
@ 4 () o+ o+ O
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Proof (contd) LB
e Applying the hockey-stick identity on each column we get

St.d) < (7h) + (5 + o+ (1)

Using mathematical induction it is easy to prove the hypothesis

P(d) : ?:0 (M) < n®, for all d > 2, n > d. The base case for d = 2,
amounts to n(n —1)/2 +n + 1 < n? = n? > n + 2, which holds for all
n > 2. Taking P(d) to be true we have

d+1 n n
P(d+1):z<i/> <nd+ <d+1>

=0
d+1
d n d n d+1
< = 1 — | <
T ar " < +(d+1>!> "

Therefore we have S(n,d) < (n + 1)%*!, from which we can conclude it is
O(nd+1).
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Circuit Sketch Polymobl @ I~

L (n,!d) coefficients I

(n-d)

Levels S[1]

[}
[ ] Partial
[ ] Truth

Table
—

Expmobl

Figure: Hardware architecture Polymobl for the Mébius Transform algorithm.
The blue shaded part roughly represents one arm of the butterfly unit.

® One reg of size (ﬁi) for Ag, but only one reg of size (”Jdl).
® If level 2 stores Aiqp, it must preserve this till its entire left sub-tree is executed.

® Only then overwrite to Apottom-
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Circuit Sketch Polymobl @ I~

L (n,!d) coefficients I

(n-d)

Levels S[1]

[}
[ ] Partial
[ ] Truth

Table
—

Expmobl

Figure: Hardware architecture Polymobl for the Mébius Transform algorithm.
The blue shaded part roughly represents one arm of the butterfly unit.

® Multiplexer select signals control the flow.
® 3:1 multiplexer — Either preserve state or overwrite with A¢qp/bottom

® However only 2:1 mux is sufficient.
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A bit of notation

(n—d) levels

A (n,ld) coefficients | f(xq,x1,X2,...)
[ (1id) ]f0..) [ (1ld) ]f@..)

£(0,0,., £(0,1,..) £(1,0,.. 1,1,..)

[(24d] [(24d]  [(20d)] | (’n/z\id)l

D [] D (] 10
£(0.0,0...) £(0,0.1,..) £(0,10...) (0.1,1g)f(1.0.0,.)f(1.0.1...) f(11,0,.)f(1.1,1...)

: :
\

QU0 0o 0t 0o 0ogd go o

(2"9) leaf nodes
Figure: Hardware architecture Polymob1l for the Mébius Transform algorithm
The blue shaded part roughly represents one arm of the butterfly unit

® Every level sets one bit in the function argument
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A bit of notation

(n

4

—d) levels

A

0]

LY

(n,ld) coefficients | Ag | <depth<n-d

[

Al2]goo Al2lo1o  Al2l1g) Al2li10 .
[(21d) [(v2dd] [(v20d] [(n2a) "d bits

8y ity e o

AlBlogoAlBlgo1  Allo10ABlo11@ Al3l100ABl101 AlBl110ABII1L
[ )

(r14d) Allggo [ (nLid) | Altligo

00 4y oo DD 04 o g

(2"9) leaf nodes

Figure: Hardware architecture Polymobl for the Mébius Transform algorithm.
The blue shaded part roughly represents one arm of the butterfly unit.

® | et us label each ANF as A[depth]pits
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A bit of notation

L (n,d) coefficients

|> (n-£,d) A[ﬁ]b at time t
Y [}

L (n-¢-1,1d) A[/+1], at time t+1

[
[ J Partial
[ J Truth

(d.1d) Expmobl Table
—

Figure: Hardware architecture Polymobl for the Mébius Transform algorithm.
The blue shaded part roughly represents one arm of the butterfly unit.
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A bit of notation

L (n,ld) coefficients I
[ ]
[
[
L (n-0,d) | A4, at time t

(u:=n-d)
[ J
(] Partial
[ Truth
Table

Expmobl
L (dld) —

Figure: Hardware architecture Polymobl for the Mébius Transform algorithm.
The blue shaded part roughly represents one arm of the butterfly unit.
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A bit of notation ﬁlm

L (n,ld) coefficients I
[ J
[ ]
[
L (n-0,1d) | Al at time t
]

Sl

L (n-(-1,1d) | A[€+1]b+s[€]t~2“*f at time t+1

[ ]
[ Partial

[ J Truth
Table
L (d.d)
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Simulation n =5,d = 2

(c) t=2

L Al0loo

— S[0]s=0 S[0]s=0
‘ S[1]5=1 S[1]5=0
———
ARlio
¥ I I
— S[2]=1 S[2]s=0 — S[2]e=1
(e) t=4 (f) t=5 (g) t=6
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L Al0Joo

s[0]s=1
L Alllioo

IIIJ

S[1]5=0
e e——
I
S[2]:=0
-—— .
(d) t=3

L AlO0Jooo

s[0};=0
L Alllooo

IIIJ

S[1l,=0
—
I
s[2l,=0
(h) =7
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Convert to Set of Equations

tle=0]r=1 | =2 | (=

00 0 0 0

1[0 15000 | 2-S[o S0

210 4-5[0]; | 4-5[0]o+2-S[1] 2. S[o + S2I1

3]0 4-80], | 4-8[0]i+2-S[1s 4-S[0)o +2- S[1]s + S[2:
410 4-5[0]5 |4-S[0]2+2-S[1s |Y4-S[0+2-S[1]+ S[2]3
510 4'5[0]4 \\4'5[0]3—1—2'5[ ] 4. 5[0]2—1—2-5[1}3—}—5'[2}4
6|0 4-5[0]5 |Y4-S[0]4+2-S[1]5 | 4-S[0)s+2-S[1]s+ S[25
710 4-8[0g |4-S[0)5+2-S[1]g | 4-S[04+2-S[1]5+ S[2]s

o Left Column needs to be 0,1,2,3,...7

e Solve the integer equation system: look for solutions in {0, 1}
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General Case (u:=n-d)

Slu — 1] =

2:Su—2]p + Slu—1] =

2° - S[jlo o + Slu—1]; =

2471 5[0]o + 272 sy + o+ 28-Sl + o + Su—1]y—1 =
2~ 1. S[0]y + 2472 . 5[1]» + o4 20 Sl + .- + Slu—1]u -
2471 S[0lgu_yo1  + 2" 2 S[lgu_y 4 oot 20 Sh]sqou_n + - + Slu—1lau_y =

e Solve the integer equation system: look for solutions in {0,1}
e Does Solution exist ? Is solution implementable ?
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General Case (u:=n-d)

S[u — 1]o =1
2.S[u—2]g + S[u—1]1 =2
2% - S[5lo + o + Shu—1]; =i+1
qu—1 S[0lo 4 oou—2. S[11 4+ o4 21: - S[41; + o + Slu—1]y_1 = u
2u=1. 500]; + 2¥72 . 5[1], + oot 20 S + o + S[u— 1]y =u+1
2U" 1 S[0)gu _yy  + 2472 S[Agu_y oo+ 20-S[]_iiou_g  + co- + Su—1]gu_s =2%—1

e Look at the i-th column shaded in green (note j = u — 1 —4)
e S[j]t is the i+ 1-th Isb of (i +1),(i+2),..., i.e. the (i+1)-th Isb of ¢ +i+1.
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General Case (u:=n-d)

Slu —1]o =1
2-S[u—2]0 + S[u—1] =2
2% - S[jlo + e + S[u—1]; =i41
2"~ 1. S[olo + 2472 50] + ot 28 5[l + o + Su—1lu_1  =u
24—1. 500]y + 2%=2. 39[1], + oot 20 Sl 4o + S[u— 1]y =u+1
2u L S[0lgu 1+ 2472 S[Ugu_y  + oo+ 20-S[] shou_o + - + Su—1]gu_g =2%—1

e A wu-bit decimal up-counter for the variable .
e A series of u incrementers to generate t+1, t+2,...,t+ u.

75  Subhadeep Banik Equation Solvers over GF(2) 1.5.2024



Circuit is implementable in logarithmic depth @

X Xji_] eee an e Xn3+1 xn3 e xn2+]_ xn2 cee xn1+]_ xnl xnl—loo- X2 X1 Xp

_|_ 0 1 0 1 0 1 0 1 0 0 0 O
1
L2 z, Z3Xnyi1 23 Z5Xny 11 2, 2%z T X XoX1Xg  XiXo  Xp

Carry outs

Figure: Visual representation of the addition ¢ +1i 4+ 1

® Having the whole incrementer circuit is unnecessary.
® We are only interested in (i + 1)-th Isb of ¢ +4 + 1.
® The expression is z; ® z4 HZ_;%H Tk.

® Can be implemented using 2log, u depth.
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Polysolvel

—3"

f; )
b
Polymob1 D LA

27— 27 bits
OR Network

Priority Encoder Root

Figure: Hardware Solver Polysolvel

Critical
path

o After OR-ing, Priority Encoder gives the location of 1st 0 in the table.
e The solver will extract one root per partial truth table.
e Note large critical path !!
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Polysolve2

Polymobl

Expmobl

24 — 24 bits

Reg 1

gig g o
A )
-

OR Network

Root
Priority Encoder

Figure: Hardware Solver Polysolve2

e Pipelining reduces the length of critical path.
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Polysolve3

Expmobl

27 — 27 bits

Reg 1

OR Network
Reg 2 et
= Freeze
Root

Decoder

I

Priority Encoder ’—L’
; j OR
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f1 f2
Poymoblm m LA [+

Example

If d = 4, and the OR of the truth tables is
Tp = 1011 1111 1111 0111

e At 7 = 0 Penc outputs 0001

e Decoder op Do = 0100 0000 0000 0000
ey =TyV Dp=1111 1111 1111 0111
e HW(T1) = HW(Tp) + 1, and is written
back to Reg2.

e At 7 = 1 Penc outputs next root 1100
e We have D; = 0000 0000 0000 1000.

o> =T Vv Dy =1111 1111 1111 1111
which is now the all one string.
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Polysolve3

Problem

The critical path of priority encoder+ decoder increases as d increases
e Task 2: How to reduce it ?
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Polysolve3 @ I

Problem

The critical path of priority encoder+ decoder increases as d increases
e Task 2: How to reduce it ?

Solution

The Enc+Dec basically flips last 0 from a string
Other solutions exist n OR n + 1 77

n: 1100 0101 0111
+1

n+1: 1100 0101 1000
n: 1100 0101 0111

nVn41: 1100 0101 1111
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Polysolve3 @ I

The critical path of priority encoder+ decoder increases as d increases
e Task 2: How to reduce it 7

Solution

e In stead of Encoder followed by Decoder, we can do Encoder and n OR
n + 1 block in parallel.

e Simultaneously fishes root+ flips zero.
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Polysolve3: Brent Kung adder @I

giPi

)/ O o opn.

Generate/propagate

®g;=a; b;andp; =a; Db,
e Go, Py = go,po and G, P; = (gi,pi) o (Gi—1, Pi—1)
o (z1,y1) 0 (w2,y2) = (1 V (y1 - T2),¥1 - Y2).
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Polysolve3: Brent Kung adder @I

gipj
O o opn.

@

Generate/propagate

e Has logarithmic depth
e Can be used with carry-select approach
e TO get faster adders for arbitrary d.
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Time taken

Problem

e Plain Circuit takes 2"=% cycles.
e Task 3: How much time does this take if there are R roots 7
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Time taken @ E

Problem

e Plain Circuit takes 2"=% cycles.
e Task 3: How much time does this take if there are R roots 7

Solution

e If partial truth table has r; = 0 roots: no additional cycle.

o If partial truth table has r; = 1 roots: one additional cycle.
e If partial truth table has r; = 2 roots: two additional cycle.
e Therefore 1 + r; cycles per partial TT

on—d

Sl =243 r;=2""+R
i=1
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Energy Efficiency

Woasteful Computation

e Suppose we have 50 equations in 50 variables.
— The common solution of 1st 10 equations is 100.
— Evaluating Mébius Transform for the remaining equations=-Evaluating 40
equations at 2%° points each.
— Evaluating 40 equations at 10 points is sufficient !!!!

e We found energy efficient solution for this.
e The idea is to filter any common root of first 10 eqns using Dot-product circuit.
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Energy Efficiency

Woasteful Computation

e First run Mobius Transform on a small number of p equations.
— Find the common solution set A of 1st u equations.
— The remaining equations has to be checked only on above set

e So how do we this?
e Each r € A has to be evaluated on m — p equations.
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Tools

Circuit components

e Root expander: RE(n,d):{0,1}" — {0, 1}(fd).
— Eg.RE(4, 3) over the vector (xg,x1,x2,23) = (1,0,1,1)
— const value= 1, zgz; =0, xpx2 =1, zoz3 =1, 2122 =0, 2123 =0,
ToXg = 17 ToX1To = O,LL’O,’E1.7J3 = O7 ToXaly — 1, L1X2x3 = 0.
— The expanded root r=1111 0001 110
— Total hardware overhead is (|,;) —n AND gates.
e Dot-Product: Eg f = 1D zg P 22 ® 201 © T223.
— Vector Description v=1011 0001 001.
— The dot-product r - v =0, equals f(r).
— () AND gates and (/;;) —1 XOR
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Circuit

90

Subhadeep Banik

A i
Priority Encoder }J—W:T

.

PolySolve3 instance with ;. equations

f
LHT' Dot Product
f
142
R — Dot Product OR
[ J Tree
°
[ ]
f
*’, Dot Product
d Root
Expander J

Root

Root Valid
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Time taken @ I

Problem

e Plain Circuit takes 2"~% + R cycles.
e Task 3: How much time does this take if there are y instances 7
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Time taken

Problem

e Plain Circuit takes 2"~% + R cycles.
e Task 3: How much time does this take if there are y instances 7

Let fi, f2,..., fu beiid balanced Boolean functions of n variables each. Then the
expected cardinality of the solution space of the system of equations

fi=fo==fu=0is2"".

e So R+ 2" % =2n=1 4 974 cycles on average.
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Energy

Energy (1J)

80

70

60

40

30

20

10

2 4 6 8 10 12

Figure: Energy consumption for varying u for n = m = 20. The colored dashed
lines show the energy consumed in the Polysolve3 circuit for the corresponding

equation systems.
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Depth Bound trees

Algorithm 2: Recursive Mobius Transform

Mébius (Ao, n, d)

Input: Ag: The compressed ANF vector of a Boolean function f
Input: n: Number of variables, d: Algebraic degree

Output: The Truth table of f

/* Final step, i.e. leaf nodes of recursion tree */

if n=d then
Use the formula B = M, - Agp to output partial truth table B.
/* Use either Expmobl/Expmob2 to do this */

end

else
Declare an array T of size ("i_dl) bits.
/* Compute the 2 operations of the butterfly layer */
Store 1st butterfly output i.e. Atop in T' (requires no xors).
Call Mébius (T, n — 1,d)
Store 2nd butterfly output i.e. Apottom in T’ (requires some xors).
Call Mébius (T,n —1,d)

end
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Depth Bound trees

Algorithm 3: Recursive Mobius Transform

Mébius (Ao, n, d)

Input: Ag: The compressed ANF vector of a Boolean function f
Input: n: Number of variables, d: Algebraic degree

Output: The Truth table of f

/* Final step, i.e. leaf nodes of recursion tree */

if n=h>d then
Use the formula B = M, - Agp to output partial truth table B.
/* Use either Expmobl/Expmob2 to do this */

end

else
Declare an array T of size ("i_dl) bits.
/* Compute the 2 operations of the butterfly layer */
Store 1st butterfly output i.e. Atop in T' (requires no xors).
Call Mébius (T, n — 1,d)
Store 2nd butterfly output i.e. Apottom in T’ (requires some xors).
Call Mébius (T,n —1,d)

end
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Depth boundedness

(n—h) levels
A

(n,ld) coefficients | f(xq,x1,X2,...)

[ (1id) ]f0..) [

/\ ) £(1.0,.

(2.9 l(

l( 1d)] [(nud)]
A A

(n-14d) ]F(1..)
(0,0,
o

£(0.0.0...) f(0.0.1,..

f(()l() )fl)l].)f(lOO )6(101 )fll() 1111 .)
3 .
:

Yoo

(| I N O N [ D)D |

(2" leaf nodes
Figure: Hardware architecture Polymobl for the Mébius Transform algorithm
The blue shaded part roughly represents one arm of the butterfly unit

® Number of levels shrink to n — h from n — d

® Faster computation: 2" # 4 2n—d _ 9n—p 4 gn—h
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Depth boundedness

(n—h) levels
A

(n,ld) coefficients | f(xq,x1,X2,...)

[ (1id) ]f0..) [

/\ ) £(1.0,.

(2.9 l(

l( 1d)] [(nud)]
A A

(n-14d) ]F(1..)
(0,0,
o

£(0.0.0...) f(0.0.1,..

f(()l() )fl)l].)f(lOO )6(101 )fll() 1111 .)
3 .
:

Yoo

N | I I o |
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Figure: Hardware architecture Polymobl for the Mébius Transform algorithm
The blue shaded part roughly represents one arm of the butterfly unit

® Downside Expmobl, encoder needed over h > d bits
® Increases the critical path
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Energy reduction
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Figure: Energy decrease with increasing h for new solvers for n = 20, h = u. The
colored horizontal lines indicate the best possible energy consumption for the full
depth circuit for the same equation system.
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SAKURA-X

Figure: SAKURA-X

Proof of Concept

e SAKURA-X mainly built for side-channel experiments, limited computational
power.

e We could solve quadratic equations of upto 50 variables in 8 hours.

e TODO — Implement on an FPGA cluster and solve upto 100 variables.
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Conclusion

® Given m equations in n variables over GF(2).
e Asymptotically, all the solutions can be found using a circuit of area o< m - n®t2.

® This is not energy-efficient however: Mobius Transform does a lot of redundant
computations.

e Circuit for energy efficiency also proposed.

100 Subhadeep Banik Equation Solvers over GF(2) 1.5.2024



THANK YOU
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