Automatic Application of Side Channel Countermeasures: History and Perspectives

Francesco Regazzoni

Contents

How Everything Started?

Where Are We?

What is Design Automation?

Where do we want to go?

Francesco Regazzoni 15 December 2023, Roorkee, India

ŀ

-

What Are Physical Attacks

What Are Physical Attacks

Physical attacks recover secrets by exploiting the implementation

Types of Physical Attacks

Active Passive Fault Injection Power Analysis Timing Analysis

Side Channels Are Used in Many Fields

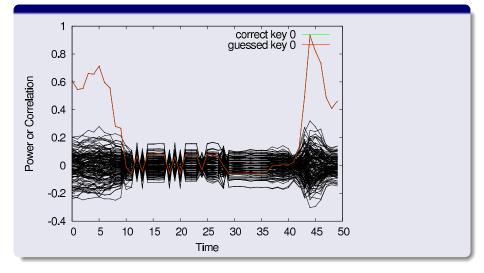
- Pizza Delivery
- Energy Consumption
- Biology

...

Cryptography

Differential Power Analysis (DPA)

- Goals: The adversary make hypotheses on smaller portion of the keys and verify it on the power traces
- Requirements: Knowledge about the implemented algorithm


Verify the hypotheses

Difference of means

Correlation

Multivariate statistic

Example of Differential Power Attacks

Why Physical Security is so important?

IoT

...

- Cyber Physical Systems
- Implantable devices

Shared resources on cloud!

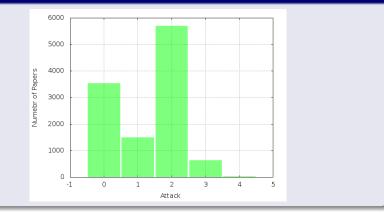
Contents

How Everything Started?

what is Design Automation?

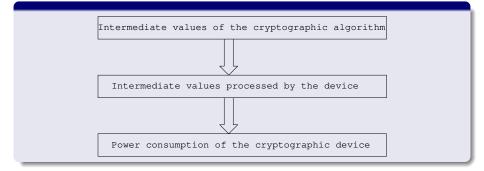
Where do we want to go?

Francesco Regazzoni 15 December 2023, Roorkee, India


ŀ

-

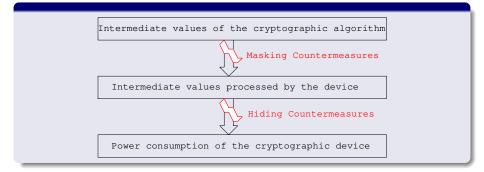
Two Main Directions...

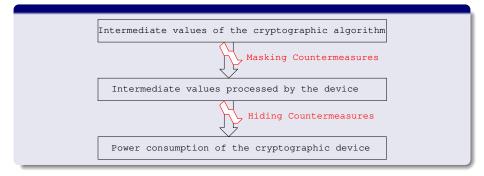

Countermeasures || Better Attacks

Research Activity per Attack (approx)

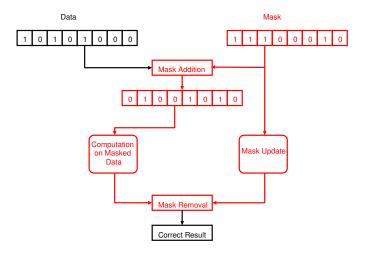


- 1996 Timing Attacks
- 1997 Fault Injection Attacks
- 1999 Power Analysis Attacks
- 2002 Electromagnetic Attacks
- 2012 Photon Emission


Power consumption **independent** from processed key dependent data

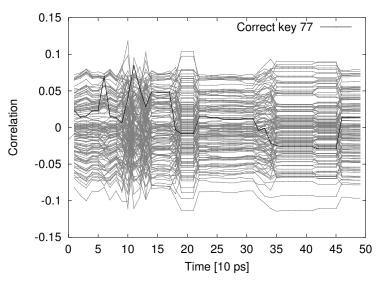

Power consumption **independent** from processed key dependent data

Power consumption **independent** from processed key dependent data



Power consumption **independent** from processed key dependent data

They can be implemented in Software or in Hardware


More Details on Masking

э

イロト イヨト イヨト

More Details on Hiding

Contents

How Everything Started?

Where do we want to go?

Francesco Regazzoni 15 December 2023, Roorkee, India

ŀ

-

From Idea to ASIC: the design flow....

"Surely the purpose of science is to ease human hardship"

Galileo, Bertolt Brecht

A bit of history

- 1948 Transistor
- Design done by hand
- 1970 Automated place and route
- 1980 Chip design with programming languages

A bit of history

- 1948 Transistor
- Design done by hand
- 1970 Automated place and route
- 1980 Chip design with programming languages
- Chip is most likely to function correctly
- Chip is easier to be verified
- Designer can handle more complex designs
- Birth of commercial EDA companies

First consideration....

1996 Timing Attacks

■ 2023... A bit late....

ŀ

Why Automation....

Francesco Regazzoni 15 December 2023, Roorkee, India

... for security?

- Security is very often considered at later stages of design
- Cost and Time to Market
- Possible Security pitfalls
- Handle the Complexity

... for security?

- Security is very often considered at later stages of design
- Cost and Time to Market
- Possible Security pitfalls
- Handle the Complexity

EXTRA CONSTRAINT

Use as much as possible "standard" design commodities!

A bit of history

- 1996 Physical attacks
- Countermeasures done by hand
- 2004 Secured synthesis and place and route
- 2009 Tool driven by a security variable

A bit of history

- 1996 Physical attacks
- Countermeasures done by hand
- 2004 Secured synthesis and place and route
- 2009 Tool driven by a security variable

Still only goals

- Chip would most likely to function securely
- Chip security would be easier to be verified
- Designer could handle more complex designs
- Birth of commercial EDA security companies (?)

Contents

How Everything Started?

What is Design Automation?

Francesco Regazzoni 15 December 2023, Roorkee, India

ŀ

-

Where are we?

э

< □ > < □ > < □ > < □ > < □ > < □ >

Step One

Automated Synthesis

INPUT:

HDL Description

- Technological Library (area, timing, power)
- Synthetic Library (multipliers...)
- Constraints

OUTPUT:

- DPA resistant Gate Level Netlist
- Estimation of area, timing, power (!)
- Timing constraints

Automated Synthesis

WDDL:

- Build using standard gates
- For selected gates in the library, make the correspondent WDDL gate
- Synthesis, using existing tools (limiting the used gates)
- Replace the gates with the WDDL correspondent

CML:

- Design a new library from begin
- Characterize the library and generate all the needed files
- Synthesis using existing tools

Automated Place and Route

INPUT:

- DPA resistant Gate Level Netlist
- Technological Library
- Estimation of area, timing, power (!)
- Timing constraints
- Secure Place and Route Script

OUTPUT:

DPA resistant fabrication file

- Define a larger wire
- Place and route using the larger wire
- Edit the design file cutting the wires in two
- Careful for instance with T-shapes

 Number of Samples Easy but based on specific attack scenario

Success Rate Based on specific attack scenario

$$\operatorname{Succ}_{\operatorname{attack}}^{K} = \Pr[f = 1]$$

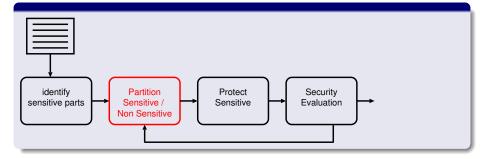
Information Theory Complex but independent from the attack scenario

$$\mathbf{H}[K|L] = -\sum_{k} \Pr[k] \cdot \sum_{x} \Pr[x] \int \Pr[l|k, x] \cdot \log_2 \Pr[k|l, x] \, dl.$$

Step Two

Towards Automatic Application of Countermeasures

Inputs:


Unprotected AlgorithmCountermeasure

Output:

Algorithm where the countermeasure is Applied

Algorithm where the countermeasure is applied does NOT mean protected Algorithm

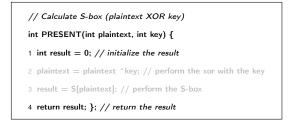
Putting all together

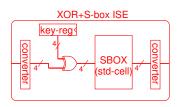
- Generate useful power traces?
- Measure the DPA resistance?
- Countermeasure and its design flow?
- Partition the algorithm?

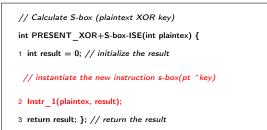
э

(日) (同) (三) (三)

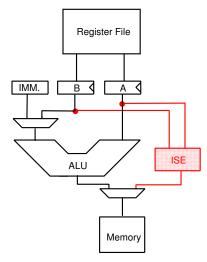
Customizable Processors

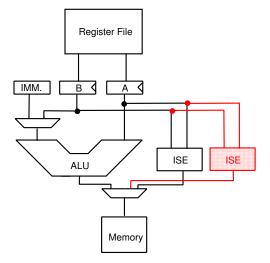



int PRESENT(int plaintext, int key) {

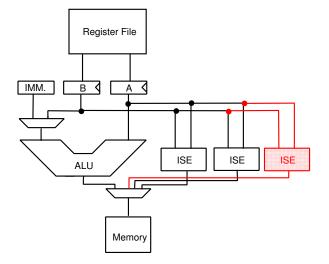

- 1 int result = 0; // initialize the result
- 2 plaintext = plaintext ^key; // perform the xor with the key
- 3 result = S[plaintext]; // perform the S-box
- 4 return result; }; // return the result

< ⊒ >

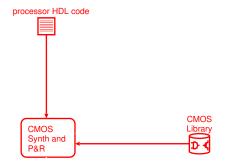

Customizable Processors



Protected / Non Protected CO-Design!

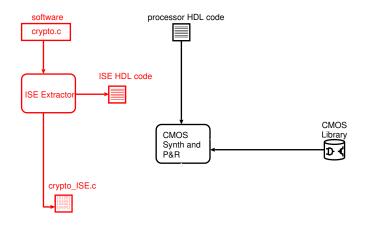

э

Protected / Non Protected CO-Design!


э

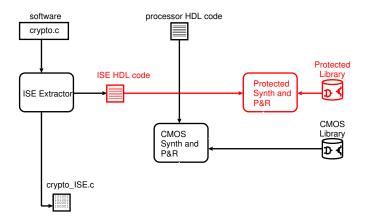
Protected / Non Protected CO-Design!

э

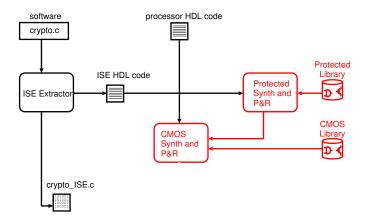

CMOS Design Flow

イロト イボト イヨト イヨト

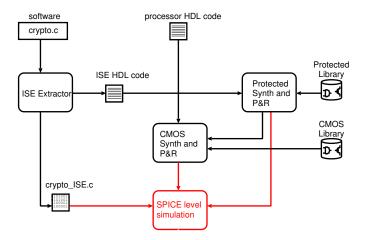
э


Processor Customization

3

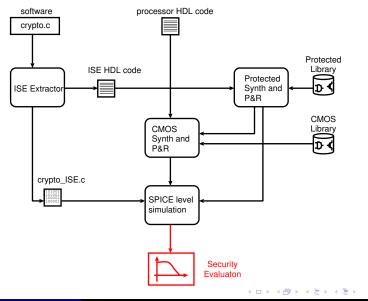

< ロ > < 同 > < 回 > < 回 > < □ > <

Protected Design Flow


э

Hybrid Design Flow

э


Simulation Environment

3

< ロ > < 同 > < 回 > < 回 > < □ > <

Design Evaluation

3

Security Evaluation

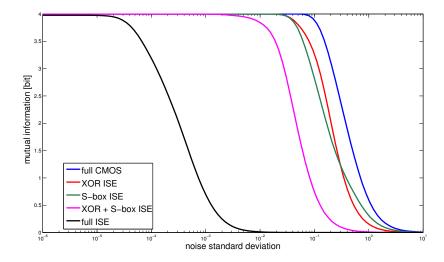
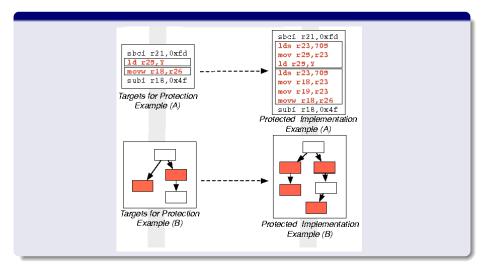
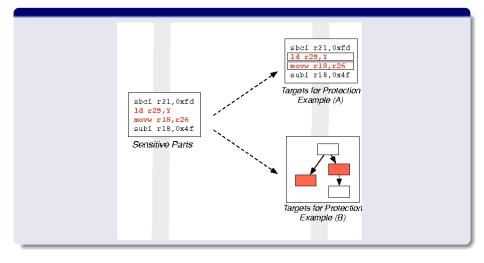



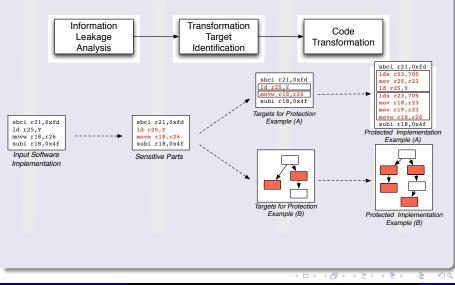
Image: Image:

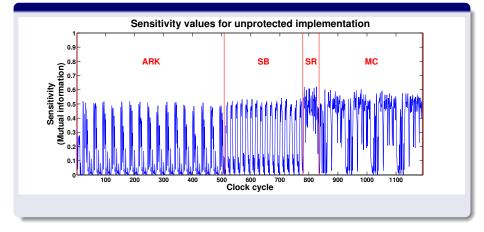
< ∃ →


- Power Analysis: random precharging, masking
- Timing attacks
- Domain Specific Languages
- Verification (mainly on properly applied masking)

Code Transformation

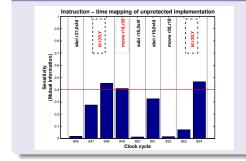
э


Transformation Target Identification


э

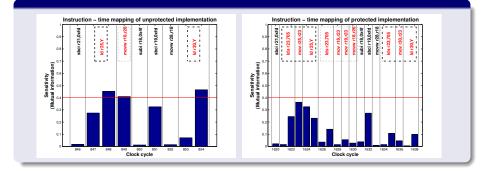
< 日 > < 同 > < 回 > < 回 > < 回 > <

Overall Software Flow

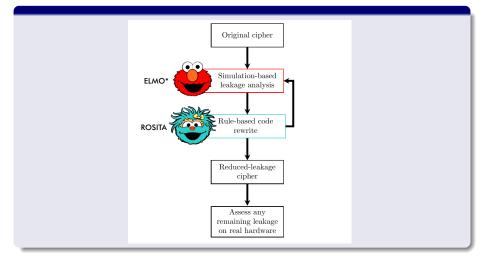


Information Leakage Analysis

A
 B
 A

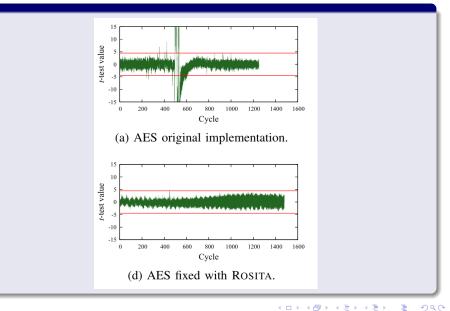

Example on Software

э


イロト イボト イヨト イヨト

Example on Software

э


Code Re-Write Engine

э

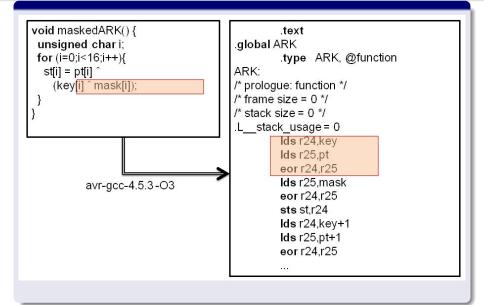
イロト イボト イヨト イヨト

Code Re-Write Engine

Step Three

Towards Verification

Inputs:


Algorithm where the countermeasure is AppliedCountermeasure

Output:

 Assertion of the Correct Application of the Countermeasure

 Assertion of the correct application of the countermeasure does NOT mean protected Algorithm

Do We Need Verification?

Goal

Given a **program**, find the **sensitive** operations, which **leak critical** information.

Define three types for variables:

- Secret
- Public

Random

Represent the program as a graph

 Use satisfiability queries to detect the dependencies and sensitivity

Dependency Check

- Is it a Don't care from random point of view?
- If at least one bit is not a don't care, it is random, so ok.
- Else, check if is a Don't care from some secret variable?
- If at least a bit is not a don't care, then is sensitive.
- Compiler problems
- Programmer problems (shift with hamming distance leakage)
- Countermeasure problem (Goubin [2001])

Contents

How Everything Started?

Where Are We?

What is Design Automation?

5 Where do we want to go?

ŀ

-

One

Goals:

Identify weaknesses in the design

Open problems:

At which level of abstraction?

How realistic is it?

Goals:

Measure the weaknesses in the design

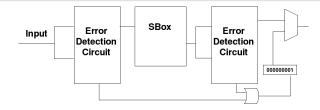
Open problems:

Which metrics do we use for other attacks?

Can these metrics be combined?

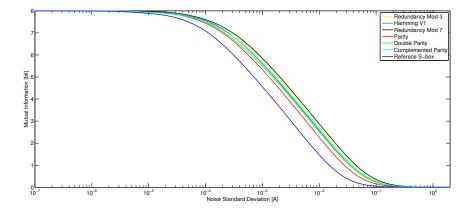
Other Attacks?

Goals:

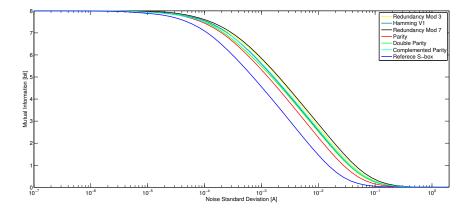

Global protections against physical attacks

Open problems:

Countermeasure for them?


Which metric?

Effects of Error Correcting Codes on DPA



 Reference 	
Parity	
Complemented Parity	
Double Parity	
Residue Modulo 3	
Residue Modulo 7	
Hamming Code	

Error Correcting Code

Error Correcting Code

I am helping the DPA attacker!

Francesco Regazzoni 15 December 2023, Roorkee, India

- Automation is necessary for handling security
- Metrics are a fundamental brick for design automation
- Power analysis attack is not solved, yet is only the first one

Acknowledgments

DESIGN ENVIRONMENT FOR EXTREME-SCALE BIG DATA ANALYTICS ON HETEROGENEOUS PLATFORMS

(日) (同) (三) (三)

Thank you for your attention!

mail: f.regazzoni@uva.nl

mail: francesco.regazzoni@usi.ch