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Motivation

• An experiment in the direction of security of Approximate Computing 
(AxC).
• Benefits of AxC are discussed without considering security.
• AxC’s relevance in security sensitive applications – unknown.

The security primitive under consideration is logic locking.



Logic Locking

• A gate level design obfuscation technique.
• Used as a countermeasure against supply chain attacks such as 

counterfeiting and overbuilding.
• Additional gates are inserted into the design, controlled by a secret 

key stored in tamper-proof memory.



Approximate Circuits

• AxC adds accuracy a new dimension into the design space.
• We opted for AxC arithmetic circuits for evaluation (from Prof.Han’s

survey).
• The AxC arithmetic circuits can be divided into error rate and error 

magnitude category.



Adversarial Approach

For a circuit C, the Boolean expression Cf implements such that C= Cf.

AxC for a C will implement a circuit CKf such that CKf ≈ C.

If CKk is the locked instance of AxC for a key k*, then for a parOally 
correct key kP, the circuit CKk, ≈ CKf ? 

If yes, what is the behavior of kP?



SAT Attack

Boolean Satisfiability: Determining if there exists a solution for a 
Boolean function. SAT attack is based on this algorithm.

• A popular known attack against logic locking.
• Finds the key by eliminating the distinguishable input patterns (DIP).

• In recent years, logic locking is hardened by decreasing the DIPs for an 
incorrect key. This has led to low output corruption problem.



SAT-resilient locking on AxC

• Anti-SAT, SARLock, CAS Lock, SFLL are not suitable in approximate 
world.
• In an exhaustive simulation, for an incorrect key, the primitive circuits 

produced as good results as (fractionally lower) correctly deciphered 
circuits.
• On neural network inference, for an incorrect key, the results were 

identical to deciphered ones.



Random logic locking vs AxC

• Hence, we investigated random logic locking on AxC primitives.

• For investigation, we simulated the primitive AxC circuits exhaustively 
with different partially correct keys.
• We generated partially correct keys of various hamming distance to 

the secret key.
• For each hamming distance, many partially correct keys were 

generated. 



AxC primitive circuits

• For adders, we used almost correct adder (ACA), error tolerant adder 
II (ETA) – these are approximaOons in the carry chain.
• Lower part OR, and XNOR based full-adders were used in accurate 

RCA and CLA adders to produce approximaOons in LSBs.
• We shall refer them as LOARCA/LOACLA and XRCA/XCLA.
• For approximaOons in mulOplicaOons, we used underdesigned

mulOplier (UDM) – approximaOon in parOal product generaOon, and 
broken array mulOplier (BAM) – approximaOon in the summaOon tree 
of array mulOplier (AM).



AxC primitive circuits

• Critical path approximations produce fewer errors but significant 
ones. They are error rate (ER)-optimized.
• Lower bit approximations are normalized mean error distance 

(NMED)-optimized.
• Multipliers are complex structures to be easily categorized.



Observation concerning locking

• NMED-optimized adder is prone to adversarial model discussed 
earlier.
• UDM is more susceptible to the adversarial model in our experiment 

than BAM.
• The incorrect keys introduce higher magnitude errors for LSB 

approximations. 
• We deduce that adversarial model is linked closely to NMED than ER.



XOR/XNOR Locking (32 key-gates):
NMED HD=0 HD=1 HD=2 HD=3 HD=4 HD=6

RCA 0 4.10E-2 7.83E-2 9.74E-2 1.18E-1 1.47E-1

LOARCA 2.20E-5 5.38E-2 8.51E-2 1.03E-1 1.12E-1 1.20E-1

ACA 3.96E-3 3.91E-2 7.10E-2 9.08E-2 1.10E-1 1.50E-1

ETA 1.68E-2 7.04E-2 1.22E-1 1.56E-1 1.81E-1 2.63E-1

HD=0 represents the functional design.

AND/OR Locking (32 key-gates):
NMED HD=0 HD=1 HD=2 HD=3 HD=4 HD=6

RCA 0 2.55E-2 5.56E-2 7.55E-2 7.55E-2 1.25E-1

LOARCA 2.20E-5 2.87E-2 5.48E-2 7.67E-2 1.20E-1 1.56E-1

ACA 3.96E-3 9.99E-3 1.59E-2 2.08E-2 2.61E-2 3.70E-2

ETA 1.68E-2 3.38E-2 4.85E-2 6.30E-2 7.60E-2 1.13E-1

Concerning >

Error characteristics



XOR/XNOR Locking (32 key-gates):
NMED HD=0 HD=1 HD=2 HD=3 HD=4 HD=6

AM 0 2.24E-2 4.12E-2 6.04E-2 7.90E-2 1.05E-1

UDM 5.80E-2 9.53E-2 1.20E-1 1.33E-1 1.26E-1 1.56E-1

BAM 8.43E-3 2.93E-2 4.94E-2 6.83E-2 8.62E-2 1.20E-1

HD=0 represents the functional design.

>
AND/OR Locking (32 key-gates):

NMED HD=0 HD=1 HD=2 HD=3 HD=4 HD=6

AM 0 7.30E-3 1.09E-2 1.44E-2 1.79E-2 2.48E-2

UDM 5.80E-2 6.03E-2 6.22E-2 6.32E-2 6.57E-2 6.71E-2

BAM 8.43E-3 2.15E-2 3.17E-2 4.12E-2 4.98E-2 6.00E-2

Concerning >

Error characteristics



Discussion

• We observed similar results for different lengths of key-gates and 
different configurations of adders/multipliers.
• When dissected to an individual incorrect key of low HD, for some 

keys, the circuits produced identical or better results.
• We term this as pathological behavior.
• To understand how this would translate to real-world application, we 

put the locked instances in neural network inference.



Locked instances in CNN

• The marked layers are implemented in Hardware. Rest in software.
• The network was trained for accurate adders and approximate ETA.
• We did not train the network for locked ETA to simulate the adversarial 

setting.



Results on CNN

• The validation accuracy of trained network for accurate adder is 
92.6%.

XOR/XNOR 
Locking

Partial key HD NMED ER% Class. 
Accurcy %

- - 0 2.47e-04 0.76 91.4

0x8a90b5bd 1 2.50e-04 1.30 92.0

0x8a90b5be 1 3.15e-04 6.91 91.0

0x8a90b5b8 1 1.24e-01 49.81 8.6

0x8a90b5ac 1 2.47e-04 61.62 91.4

0x8a90b4bc 1 7.96e-03 12.99 45

0x8a90b5bf 2 3.16e-04 7.20 91.2

0x8a90b5ba 2 1.25e-01 53.09 8.6

0x8a90b5ba 3 1.25e-01 53.21 8.6



Conclusion

• AxC circuits need protection against supply chain attacks such as 
counterfeiting and overbuilding.
• Known logic locking techniques are not a feasible solution in the 

approximate world.
• Noisy key obtained from side channel analysis may lead to correct 

deciphering of AxC circuits.
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