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1 Executive Summary

This document presents the outcomes of the EVEREST project, with a particular focus on the impact and
achievements related to the three target use cases.

Leveraging the EVEREST SDK and the other technologies developed in the project, we built demonstrators
for the three target applications, which were chosen to represent a diverse range of challenges. We considered
the use case objectives defined by the application partners at the beginning of the project (and refined at the
end of the second year).

For each of the three target use cases, several tables were created to show different targets key per-
formance indicators (KPIs) and the actual value achieved within the project timeframe. A description was
included for each objective defined in Deliverable D2.1 and revised in Deliverable D2.4, highlighting the path
followed to reach the goals and the actual results achieved.

A user story has also been included in the document to illustrate the implications of using the EVEREST
design environment for future adopters across different actors.

Finally, project-level KPIs were assessed to measure the success and impact of the EVEREST approach.
The results demonstrate the effectiveness of the EVEREST approach in meeting the predefined KPIs. How-
ever, not all use cases benefited equally (e.g. WRF-based use cases).

Deliverable highlights
No. Highlight Section(s)
1 Assessment of the objectives for the three EVEREST use cases Section 2

2 User Story for the usage of the EVEREST SDK Section 3

3 Assessment of project-level KPIs Section 4
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2 Evaluation of EVEREST Use Cases

In this section, we present the evaluation of the EVEREST use cases. This section is driven by the objectives
claimed by the use case providers in the context of Deliverable D2.1 and in its revised version Deliverable D2.4,
where the main use case goals have been claimed.

2.1 Renewable Energy Prediction

The forecast of the energy generated by a wind farm can be divided into three steps:

1. the weather predicted in the coordinates of the plant by computing a weather prediction model (with
WRF);

2. the pre-processing of weather data using a physical model (i.e., turbine power curve) and machine learn-
ing for anomaly detection, aimed at maintaining the cleanliness of the dataset for training ML forecasting
algorithms

3. the implementation of Machine Learning algorithms for predicting the energy generated.

In terms of computation, the weather forecast is the most node-consuming, with an execution time of hours
compared to minutes for the other steps. The main objectives are:

• improving forecast accuracy

• reducing the execution time of the WRF forecast as much as possible.

The individual phases relating to the development of the application from scratch during the EVEREST project
are described below.

2.1.1 O1.1 - The implementation of a DUF proprietary application for energy pro-

duction prediction

DUF dispatches a portfolio of wind power production, with the goal of optimizing profit by reducing forecast
errors and, therefore, imbalance costs. For this purpose, over the years, DUF has selected the best forecast
providers on the market. The application was developed from scratch within the EVEREST project in the
several stages detailed in Deliverable D6.4, Section 3.7. The entire application workflow can be divided into
three main steps: a first step related to WRF weather prediction, a second step for data pre-processing, and a
third step for training ML algorithms and energy prediction.

In the first phase, it was necessary to conduct extensive research on the sector’s scientific literature to
analyze the methods and trends for forecasting the energy of wind farms. A set of publications was identified
to analyze various topics such as state-of-the-art Artificial Intelligence techniques (AI) most suitable for short-
term wind generation prediction; the best metrics to measure the accuracy of wind power forecasting; the
importance of data pre-processing to increase model robustness and to refine the uncertainty of data; the
analysis of other WRF test cases; the advantages of hybrid models (physical-statistical); the probabilistic
methods (ensemble).

To evaluate the accuracy of the application’s forecasts, an industry-leading reference forecast provider was
chosen as a benchmark based on a comparative analysis of different providers.

Finally, the development of the workflow has been carried out, dividing it into different steps. The workflow
of the entire application, as described in detail in D6.3, involves the use of weather forecasts generated by
WRF, improved with data assimilation; data pre-processing using observation data and an anomaly detection
module; and finally the use of Machine Learning algorithms to predict the energy generation.

D6.5 - Use case evaluation report 6



http://www.everest-h2020.eu

Hereafter, we list the set of sub-objectives identified to reach the final goal of implementing and evaluating
the workflow for energy production prediction.

ITEM DESCRIPTION

Method
Studying the state-of-the-art of scientific literature to understand the most
interesting and promising trends

Priority Must Have

Baseline N/A

KPI Availability document with state-of-the-art analysis

Notes
There was no implemented application, thus an assessment of the state of
the art and SWAT analysis was needed

How To Measure
The KPI can be considered as reached if there is a document in the
EVEREST repository listing the state-of-the-art approaches and trends.

Involved
EVEREST
Components

ML predictor for energy production forecasting

Target Value Document available in the EVEREST repository

Reached Value
The document with literature highlights has been made available for internal
use in the EVEREST repository.

Description:

In the first phase of the project, to develop the application and evaluate its results, analysis was necessary
to investigate the most promising methods for wind energy forecasting.

Intermediate Steps:

1. Identification of state-of-the-art approaches: some articles have been identified in the literature to explore
the best state-of-the-art methodologies.

2. Selection of the most interesting approaches: the analysis led to identifying the most suitable ML algo-
rithms for the use case; to implement a hybrid physical-statistical approach to combine its strengths; to
identify different pre-processing methods for training ML models; to delve deeper into the advantages of
data assimilation; to classify metrics to evaluate the accuracy of forecasting models.

3. Writing of the document: the articles have been summarized in a table indicating key points and feedback

4. Upload of the document in the EVEREST repository for sharing the gathered knowledge

Result:

A complete document about the state of the art of scientific literature in the field has been prepared and
released within the EVEREST internal repository. The main feedback is related to choosing a hybrid approach
(statistical/physical) with data pre-processing based on the wind turbine power curve. In literature, several
articles demonstrate the importance of combining statistical and physical methods and the impact of pre-
processing to improve forecast accuracy.
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ITEM DESCRIPTION

Method
Summarizing the state of the practice in the industrial sector to be aligned
and possibly outperform the current scenario

Priority Must Have

Baseline N/A

KPI
Presence of a comparative analysis for the different methods and different
providers

Notes
The commercial services for wind farm energy forecast are "black box"
services, with no possibility for the customer to know the methods and
approaches implemented

How To Measure
The accuracy of the several forecast providers is measured using mean
Absolute Error of the power generated for each hour [MWh], normalized by
the installed capacity of the wind farm (NMAE).

Involved
EVEREST
Components

Not applicable

Target Value
Demonstrate the choice of the reference provider used to evaluate the
accuracy of the energy prediction application

Reached Value
Build a comparison of the accuracy results of several forecast providers
tested on DUF wind farm portfolio, available in the EVEREST repository.

Description:

The assessment aims to verify the state of the art of wind forecast providers for the sale of energy generated
on short-term energy markets and to identify a reference provider to use as a benchmark for the application
results in terms of forecast accuracy.

Intermediate Steps:

1. Selection of the providers for the comparative analysis, tested on DUF wind farm portfolio

2. Collect results related to 2022 DUF for wind farm portfolio

3. Collect results related to 2023 DUF for wind farm portfolio

Result:

Three providers for the wind power forecast service have been analyzed and one of them has been proven
to be the best in terms of accuracy, flexibility, and reliability of the service. This comparative analysis confirmed
the choice of the reference provider used up to now to compare the results of the energy forecast application in
terms of accuracy and provides a challenging benchmark result. Over the two benchmarked years the selected
providers demonstrated an NMAE (Normalized Mean Absolute Error) lower than 10%, while the others had a
value larger than 10%.
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ITEM DESCRIPTION

Method Design of a specific application workflow

Priority Must Have

Baseline N/A

KPI Presence of code deployed within the EVEREST environment

Notes
No baseline was available at the beginning of the project, the entire worflow
and prediction application have been developed from scratch

How To Measure
The KPI can be considered as reached if there is the code deployed within
the EVEREST environment, producing each day a forecast of the day ahead
wind power generation.

Involved
EVEREST
Components

WRFDA+ML energy predictor

Target Value Code deployed in the EVEREST repository

Reached Value
Code was developed and tested on DUF machines, and in the last phase of
the project has been tested and deployed on the EVEREST environment

Description:

The final application workflow has been deeply described in D6.3, Section 5.1. To build the workflow,
different development phases have been done which are summarized hereafter.

Intermediate Steps:

1. Data collection: for the training of ML algorithms, one year of WRF data and observation data were
needed, mainly wind farm generation data.
One year of WRF data (CIMA) and one of the observation data (DUF) were collected to train the ML
algorithms (see Deliverable 6.1, Section 5.2.4.1).

2. Variable selection: WRF produces a set of weather variables, it has been necessary to identify which
variables bring value to wind energy forecasting.
The most important variables were selected from the list of weather parameters coming from WRF data.
As expected, wind speed proved to be by far the most impactful parameter.

3. Data-preprocessing: The analysis determined that there was a need to introduce filters to eliminate
outliers and maintain a good level of data quality for model training.
The pre-processing methods implemented a filter based on the Power Curve of the Wind Turbine (detailed
in D6.3, Section 5.3.) and an anomaly Detection module (D6.3, Section 5.2.2).

4. Training strategy: Study and development of training strategies for the machine learning model. Several
tests and analysis to identify the best training strategy for the model has been carried out on the available
data.
Several training strategies were tested, choosing the "increasing period" method, as described in D6.3,
Section 5.4. The data relating to the 24 hours of the previous day are added each day.

5. Model Evaluation: Testing and evaluation of Machine Learning algorithms to identify the most suitable
algorithm for this specific use case have been carried out.
Two classes of algorithms were selected, Kernel Methods and Deep Neural Network, each with pros and
cons. Considering the features of the datasets, the different levels of difficulty to identify the settings and
the first results obtained, the choice fell on Kernel-Ridge with Gaussian Kernel (D6.3, Section 5.4.1).

6. Data post-processing: to reduce further the data noise effect data post-processing methods have been
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applied to the produced data.
The post-processing was performed using the Kalman smoothing technique (D6.3, Section 5.3.1).

Result:

After all the previous intermediate steps, the final version of the DUF proprietary application for predicting
the energy production of a wind farm has been released within the EVEREST repository and tested on the
EVEREST environment. Further details on the applications can be found on Deliverable D6.3.

2.1.2 O1.2 - Focus on a daily day ahead forecast (24 hrs day ahead) timeline

The application workflow is focused on forecasting wind energy over the 24 hours of the day following the
forecast day. In fact, the objective is to forecast the energy to be sold in the day-ahead market, which is the
one with the highest volumes traded on the energy markets for wind sources. The daily workflow is detailed in
D6.4, Section 3.7.

ITEM DESCRIPTION

Method Understanding pros and cons of different models and approaches

Priority Must Have

Baseline
ML algorithm Kernel Ridge with Gaussian Kernel without pre-processing and
post-processing

KPI Quality improvement of the Wind Farm Energy prediction

Notes Power generation forecast accuracy

How To Measure
Mean Absolute Error of the power generated for each hour [MWh],
normalized by the installed capacity of the wind farm (NMAE).

Involved
EVEREST
Components

WRFDA+ML energy predictor

Target Value
Comparison of the baseline approach with the one with pre-processing only,
and the one with both pre and post-processing.

Reached Value

Kernel Ridge with pre-processed input dataset and post-processed output,
was found as the best method in terms of accuracy. Results summarised
here in the table "Results with pre-processing and post-processing" saved in
the EVEREST repository.

Description:

As confirmed by the literature, data cleaning is crucial to improve the accuracy of the prediction, especially
in cases where large amounts of data are not available to train the models.

Intermediate Steps:

1. Applying pre-processing on the input dataset using the power curve of the wind farm turbines, and testing
the baseline model on the filtered data

2. Application of smoothing method on the output provided by the previous method, in order to filter the
noise from the signal and obtain a more coherent and realistic wind generation shape

Result:

The original dataset was filtered using the power curve. The output of ML was post-processed using the
Kalman smoothing technique. The improvement of the accuracy has been evaluated on a backtesting period
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of one year, in comparison with the baseline. The impacts of pre-processing methods on prediction error are
explained in D6.3, Section 5.3.3.

ITEM DESCRIPTION

Method
The selection of the proper methods, metrics and algorithms to be
implemented in the workflow for this temporal scale

Priority Must Have

Baseline Comparison among different ML algorithms

KPI Quality improvement of the Wind Farm Energy prediction

Notes
Comparison involved dataset dimension, quality and features; Deep
Learning, Recurrent Neural Network, XGBoost algorithms have been tested,
besides Kernel-Ridge.

How To Measure
The forecast accuracy using Normalized Mean Absolute Error, and the
computational complexity of the solution.

Involved
EVEREST
Components

ML energy predictor

Target Value
Selection of the method that minimizes the NMAE. Between two models with
similar results, the choise fell on the simplest model in terms of computational
complexity and interpretability of the solution.

Reached Value

Kernel Ridge with Gaussian Kernel model was selected, as it proved to be
the method with the best performance in terms of NMAE in almost all months
over the entire backtesting period, and it is also the fastest method. Results
are summarised in a table in the EVEREST repository.

Description:

To demonstrate the choice of the Kernel Ridge algorithm, a backtesting comparison with other ML algo-
rithms was carried out.

Intermediate Steps:

• Backtesting with Kernel Ridge algorithm;

• Backtesting with XGBoost algorithm;

• Backtesting with Recurrent Neural Network algorithm.

Result:

Backtests with XGBoost and RNN were performed with the same data pipeline of the Kernel Ridge, over
the same test period. The best configuration was found using the Gaussian kernel, with an incremental training
window. The optimization parameters were found using the grid search cross-validation technique. Figure 1
shows some results obtained with the different models.
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Figure 1 – Models NMAE comparison

ITEM DESCRIPTION

Method The evaluation of probabilistic ensemble approach

Priority Could Have

Baseline Baseline prediction without ensemble model

KPI Quality improvement of the Wind Farm Energy prediction

Notes
The execution of a small ensemble run of WRF simulation requires a quite
huge amount of computational power. At this stage of the project, it was not
possible to obtain such a number of FPGA-accelerated cores

How To Measure
The forecast accuracy using Normalized Mean Absolute Error, and the com-
putational complexity of the solution

Involved
EVEREST
Components

WRFDA+ML energy predictor

Target Value A method to exploit ensemble approach

Reached Value
CIMA made available on KAROLINA one month of WRF ensemble forecasts
(around 1.1 TB). DUF is analyzing the data, with the goal of identifying the
best method for the ML algorithms to process the data

Description:

The target of the ensemble analysis is to evaluate the possibility of using a probabilistic method to improve
the accuracy of the forecasts. The backtesting analysis was based on one month of WRF data: for each hour
an additional 10 forecasts were generated with a small perturbation of the input parameters.

Intermediate Steps:

• Ensamble data availability by CIMA;

• WRF ensamble ML implementation by DUF.

Result:

WRF data are available and DUF analysis in ongoing, to identify the best method to exploit the ensemble
approach and to improve the forecast accuracy. The ensemble runs have been done at the end of the project
and are under analysis while writing the document.
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2.1.3 O1.3 - Effective run of the service in terms of computational performance

efficiency with a specific focus on the WRF workflow

Renewable energy prediction is an intensive application, and the timescale of the forecast has an obvious
impact on the processing times. The exploitation of the computational heterogeneous resources shared in the
EVEREST project represents the enabling infrastructure to tackle such intensive application. By measuring the
time taken by the various components of the workflow, we found that the most intensive part of the use case
is the WRF execution on HPC resources. It takes about 85-90% of the computation: the FPGA acceleration of
the most intensive WRF components could improve the overall performance.

ITEM DESCRIPTION

Method
Evaluating the most intensive models and kernels (e.g. physics
parameterizations) selected for WRF modelling for cloud-resolving (1-3 km
grid spacing) applications

Priority Must Have

Baseline WRF CPU version

KPI % of WRF execution to be accelerated with EVEREST technology

Notes Not all WRF can be accelerated, profiling of typical executions will be used

How To Measure Performance profiler to evaluate the execution time of WRF

Involved
EVEREST
Components

No component is involved. This was done by profiling the code on the
standard infrastructure available at the beginning of the project.

Target Value At least 20%

Reached Value

Most intensive physics parameterization has been identified in terms of the
radiation module (RRTMG parameterization, longwave and shortwave
components). A profiling of the code has been done on an Intel(R) Xeon(R)
CPU E5-2630 v2 @ 2.60GHz

Description:

The exploitation of the EVEREST FPGA accelerators to speed-up the execution of the WRF model is not
a trivial task and requires multiple technologies development within the EVEREST SDK. The basic idea is to
replace the most intensive components of the WRF Fortran codebase with kernels derived through the SDK
developed in the EVEREST project. In order to identify the computational bottlenecks of the WRF model,
it is necessary to profile the run of the model against a set of representative physical representations of the
atmosphere, e.g. a set of significant forecast predictions as cloudy, sunny, and raining weather conditions. This
was considered as a benchmark to be analyzed; the profiling of the application indicated a clear hotspot that
calls for further investigations: Rapid Radiative Transfer Model for Global Scale (RRTMG), the radiation driver
exploited in standard configurations of the WRF model consumes the largest share of the execution time.

Intermediate Steps:

1. Identification of a limited set of use cases to assess the contribution of the different physics packages to
the overall WRF computing time ;

2. Extensive profiling of the execution on an Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz;

3. Analysis of code performance, and selection of the most consuming physics package(s).

Results:
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A set of case study conditions was selected, and the profiling of the WRF model was performed. As a
result, the RRTMG parameterization kernel was selected as the candidate for the acceleration. This work is
successfully concluded and can be considered as a preliminary step, mandatory for the following optimization
phase. Figure 2 shows the execution time of the WRF model divided in terms of modules and kernels.

Figure 2 – Execution time of WRF model subdivided in terms of modules and kernels. Only the radiation driver has been highlighted and further split into
short-wave and long-wave computations. Profiling on an Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz

ITEM DESCRIPTION

Method The optimization of such kernels and models within the EVEREST platform

Priority Must Have

Baseline Selected WRF-Kernel CPU version

KPI Performance and Energy Improvement

Notes N/A

How To Measure Comparison between the HPC and accelerated versions of WRF model

Involved
EVEREST
Components

A plug-in as an extension to the WRF framework to allow substituting
standard WRF modules for custom implementations (HW and HW). The
EVEREST Kernel Language (EKL), an extension of the CFDlang DSL (see
Deliverable D4.5), to express the kernels of RRTMG. Messner, a new
compiler front-end and MLIR transformation framework for EKL. Interfaces for
HLS tools for hardware generation (i.e.,Bambu and Olympus). Basecamp
module for SDK integration.

Target Value
Execution time on FPGA-based target environment, i.e.,IBM resources.
Reduction of computing time of around 25%

Reached Value
The achieved speedup resulted to be 4× wrt a high-end CPU (AMD Ryzen 9
7900X3D operating at 3.8GHz) and several orders of magnitude wrt a naive
HW design w/o SDK support.

Description:

After identifying the most intensive WRF component, i.e., the Rapid Radiative Transfer Model for Global
Scale (RRTMG), the objective has been to adapt this module to the EVEREST technologies. Since the legacy
RRTMG scheme is considered outdated and not a worthwhile target for acceleration, it has to be replaced by
more modern schemes in the current state-of-the-art weather modeling, the RRTMGP [2] that marks a new
milestone in the modernization of the RRTMG radiative transfer model. In particular, as deeply discussed in
D6.1, the target has been replacing the gas optics part of the legacy RRTMG scheme, in the form of the new
and improved RRTMGP scheme; in this context also the data-flow was pointed out. At this point, the target
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for the EVEREST acceleration specifically focused on replacing the gas optics kernel (computation of optical
depth “tau”) with its equivalent in the RRTMGP package.

Moreover, as deeply discussed in Deliverable D6.3, minimal modifications were made by implementing a
patch for WRF to introduce a plug-in to replace (on demand) the RRTMG radiation modules; this step was
also accomplished by identifying a limited set of use cases and specific data retrieval, thus validating the entire
system.

Intermediate Steps:

1. Identification of a limited set of use cases for testing phases and specific data retrieval,

2. Identification of a new, more modern RRTM version and link with the WRF code,

3. Acceleration of new RRTM module,

4. Results analysis.

Results:

Both the data retrieval and the plugin have been successfully implemented.

We accelerated the short-wave radiation part of WRF, which corresponds to the CKD kernels (used also
in other Global Climate Models). The execution time of the CKD kernels on a server with an AMD Ryzen 9
7900X3D operating at 3.8GHz on 224 points was 160 µs. Running HLS directly on the default implementation
produced a HW design with latencies upwards of 1 ms. The hardware design generated from the EKL compiler
had a latency of 42 µs. This corresponds to a speedup of 4× compared with a high-end CPU and several orders
of magnitude with respect to a naive hardware design w/o SDK support. These results have been obtained
without the use of the Bambu HLS engine since the generated code targeted Vivado HLS directly, and there
was no time to retarget it to take advantage of the further optimization available in the Bambu engine.

ITEM DESCRIPTION

Method The exploitation of the EVEREST platform to support meteorological workflow

Priority Must Have

Baseline WRF CPU version

KPI Availability end-to-end WRF execution with accelerated modules

Notes N/A

How To Measure Successful run of the daily workflow

Involved
EVEREST
Components

Same as in previous table, with the addition of the LEXIS platform.

Target Value Execution on FPGA-based target environment, i.e.,IBM resources

Reached Value 96% Execution on CPU-based target environment, i.e.,IT4I resources

Description:

The workflow of WRF provides a daily forecast of 48 hours after the assimilation of Italian radar data and
IBM Weather Underground meteo station data. The assimilation happens in 3 cycles of 3 hours each. The
forecast is guided by GFS (Global Forecast System ) dataset provided by NOAA every 6 hours. There is
a preprocessing phase performed by using a WRF tool called WPS (WRF Preprocessing SYSTEM) that is
needed in order to transform the GFS dataset in a format suitable to be ingested by WRF. This preprocessing
phase was implemented inside a Docker container

Intermediate Steps:
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1. Execution of the daily workflow on a CPU-based cluster, with delivery on Dewetra platform (a CIMA
operated system for real time monitoring, prediction and prevention of flood and wildland fire risks);

2. Execution of the daily workflow on a FPGA-based platform, with delivery on Dewetra platform

Results:

1. In the first 3 months of 2024, after the introduction of Apache AirFlow workflows performed by IT4I, the
daily run was delivered with 96% of success. Overall, the daily run was delivered to Dewetra platform for
222 days.

2. The synthesized FPGA module has been available for a couple of months before the end of the project.
This implementation was validated using the Vivado simulator. However, despite many efforts, a bug
in the Vivado Synthesis tools prevented us from evaluating directly in the hardware preventing us the
possibility to finalize the integration within a production environment. Validation runs have been done
with the newer RRTMG plugin.

2.1.4 O1.4 - Prediction accuracy comparable to the state of the practice

The objective is to demonstrate the results of the application in terms of forecast accuracy, in the day ahead
time horizon, in comparison with the state of the art, represented by the reference provider identified in O1.1.

ITEM DESCRIPTION

Method
Compare the EVEREST forecasting performance over selected periods and
for selected wind farms in terms of deterministic and probabilistic forecasts

Priority Must Have

Baseline N/A

KPI
Availability of end-to-end workflow including data assimilation, WRF
execution and Wind farm energy prediction

Notes No complete workflow was available at the beginning of the project

How To Measure
Mean Absolute Error of the power generated for each hour [MWh],
normalized by the installed capacity of the wind farm (NMAE).

Involved
EVEREST
Components

WRF-DA (WRF with data assimilation) + ML app

Target Value Narrow the gap and possibly outperform the reference provider

Reached Value
Forecast accuracy improvement close to the reference provider (of about
0.8%)

Description:

The full end-to-end workflow has been deployed and it has been possible to compare the results with
state of the art provider. The several steps of the workflow are detailed in D6.3, Section 5.1, and are mainly
composed by the execution of WRF, collecting the data on the target area and post-process using the ML
module developed. The comparison with the reference provider has been done demonstrating the improvement
in terms of forecast accuracy for each version, for different periods.

Intermediate Steps:

To reach the final results, several intermediate steps have been done. At the end of the workflow, we
first started adopting a pure Kernel Ridge algorithm (baseline), then we included a pre-processing phase, and
finally, a Kalman filter method was added.
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Figure 3 – Accuracy improvement in comparison with Reference Provider

Result:

The backtesting analysis is based on the forecast of the energy generated by a wind farm with 34 MW of
installed power, using a dataset of WRF data and observation for a period of 13 months. The table below
presents the final comparison in terms of forecasting accuracy among the several versions of the ML applica-
tions and the DUF reference forecast provider (RP):

• NMAE BL: the baseline KernelRidge application

• NMAE PC: the KernelRidge application with the implementation of Power Curve Filter method

• NMAE PC+K: the KernelRidge application with the implementation of Power Curve Filter method and
Kalman smoothing techniques, in pre-processing and post-processing components.

• NMAE RP: reference provider

The reached average distance with the reference provider has been of about 0.8%.

ITEM DESCRIPTION

Method
Implementation of adequate pre-processing components for observational
data to be assimilated into the procedure

Priority Must Have

Baseline N/A

KPI Availability of the component

Notes No data-assimilation component was available at the beginning of the project.

How To Measure
Mean Absolute Error of the power generated for each hour [MWh],
normalized by the installed capacity of the wind farm (NMAE)

Involved
EVEREST
Components

WRFDA+ML app

Target Value
Improve the NMAE respect to the Kernel Ridge method without
pre-processing

Reached Value
The NMAE was improved from 9.4% to 9.0% in the selected backtesting
period June 2021-June 2022.
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Description:

The daily workflow involves the implementation of the hourly generation data of the wind farm related to the
day before, as explained in Deliverable D6.4, Section 3.7. These observation data are pre-processed with the
WRF data and used for model training.

Intermediate Steps:

To reach the objective we went through the following intermediate steps:

1. Data collection related to the physical power curve of the wind turbines

2. Use the power curve to filter out from the training set the samples that deviate too much from this curve,
obtaining a more reliable dataset

Result:

The physical power curve of the wind turbines was collected from the owner of the wind turbines. The
training set was filtered using the power curve. The results showed an improvement of the Kernel Ridge
performance using this pre-processing technique, as explained in D6.3, Section 5.3.3.

The following histogram (Figure 4) shows the evolution of the forecast error due to the main upgrades of
the application:

• the baseline application (BL), with no pre/post-processing

• the baseline application with the Power Curve pre-processing method (PC)

• the baseline application with the Power Curve pre-processing method and the implementation of pre-
processing/post-processing Kalman filters (PC+K):

Figure 4 – Impacts of pre-processing on forecasting accuracy
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ITEM DESCRIPTION

Method
Implementation of adequate security policy during observation
collection/transfer

Priority Should Have

Baseline Workflow without Anomaly Detection module

KPI
% of injected anomalies that are detected and count of anomalies detected in
historical data

Notes
The module will be used for detecting possible malicious data ingestion, and
for cleaning historical data

How To Measure
Inject anomalies in historical dataset and perform anomaly detection, process
historical data and report anomalies

Involved
EVEREST
Components

AD module

Target Value 21k records (all historical data provided by DUF)

Reached Value 21k records

Description:

Referring to the renewable energy use case, anomaly detection is performed on the WRF output data,
already elaborated through some pre-processing. It is to take into account the seasonal effects and spatial
relations of the dataset that are mandatory to maintain during the anomaly detection; the details of the detection
algorithm are reported in Deliverable D3.2. To test the effectiveness of applied methods, it was necessary to
actually inject anomalies into the data and validate the detection.

Intermediate Steps:

1. share historical data

2. inject anomalies

3. detect injected anomalies

Results: Anomaly injection methodology has been replicated from earlier anomaly detection results, as de-
scribed in Deliverable D3.1. Anomaly detection performance has been validated using this final step. Perfor-
mance is reported in the following: All historical data has been processed. Firstly it has been analyzed for
anomalies, which resulted in no significant anomalies being found. This has been described in more detail in
Deliverable D6.3. Furthermore, anomalies have been injected to validate the performance of ADLib. Anoma-
lies injected were detected at a good rate. This was validated using a Receiver Operating Characteristic curve,
which gives us an idea of the trade-off between true positive rate and false positive rate using different detec-
tion thresholds. For example, a threshold which achieves a true positive rate of 0.8 has a false positive rate
of roughly 0.25 using a model found through ADLib. In general, an Area Under the Curve of the Receiver
Operating Characteristic curve of 0.82 was achieved on anomalies injected using an alpha of 3, which is in-line
with previous results. With more extreme anomalies the performance of the model improved as expected, e.g.
an alpha of 5 resulting in an AUC of 0.91.
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ITEM DESCRIPTION

Method
Exploiting of the EVEREST computing platform in support of the overall
modelling workflow

Priority Must Have

Baseline N/A

KPI
Availability of the end-to-end execution of the energy prediction workflow
using EVEREST hw/sw platform

Notes
FPGA exploitation at least of one component, complex orchestrator of the
different components, data transfer of the daily in-situ data

How To Measure Rate of successful run of the daily workflow

Involved
EVEREST
Components

WRF, Pre-processing, Anomaly Detection Module, Machine Learning
predictor, post-processing

Target Value Energy prediction workflow up and running on a daily basis

Reached Value

The end-to-end workflow application is deployed at IT4I (resources of the
Karolina supercomputer). The workflow includes: pre-processing, Anomaly
Detection Module, ML and post-processing). It’s possible to run the workflow
from the LEXIS portal too.

Description:

The objective is to operate the full chain of the renewable energy production prediction fully exploiting
EVEREST resources and evaluating related performance. Most of the intermediate steps have been already
described, from WRF acceleration up to ML prediction while considering anomaly detection. A high-level
schematic view of the entire workflow is presented below:

Figure 5 – Full renewable energy prediction workflow
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Intermediate Steps:

1. WRFDA (WRF data assimilation) workflow up and running

2. energy prediction component up and running

3. accelerated WRFDA workflow up and running

4. end-to-end energy prediction workflow up and running

Results:

As already reported, after introducing Apache AirFlow workflows performed by IT4I, the daily run was
delivered with 96% success - reference period first 3 months of 2024.

1. The WRFDA workflow (EVEREST WRF Italy workflow in LEXIS Platform) is executed daily at 3:55 AM
(can also be executed manually). In case of failure, it is possible to re-execute each part of the workflow.

2. Energy Prediction part (Pre-Processing, Anomaly Detection, Energy ML) utilize containerization that al-
lows easy execution on Kubernetes or HPC infrastructure. The HPC version of the energy prediction
workflow can be executed through the LEXIS Platform as a demonstrator (ML at IT4I workflow).

3. The synthesized FPGA module for the RRTMG plugin arrived only in the last days of the project and
there was no possibility to finalize the integration within a production environment.

4. The full renewable energy prediction workflow is running without the accelerated modules (see previous
item). It can be executed using the LEXIS portal.
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2.2 Air Quality Prediction

The air-quality forecast due to the emission of an industrial site relies on two parts: (i) weather forecast and (ii)
atmospheric dispersion forecast.

When the different inputs of the atmospheric dispersion forecast (e.g.: the site’s characteristics, the emis-
sion) are well known, the quality of this second step depends strongly of the quality of the weather forecast.
Moreover, in terms of computation, it is the weather forecast which is the most nodes-consuming with an
execution time in hours compared to minutes/seconds for air-quality. In consequence, the EVEREST project
focuses on the weather part with two main objectives:

1. Improve the performance of the baseline which is a deterministic forecast performed by NUM with the
WRF model.

2. Reduce as much as possible the execution time of the WRF forecast.

The following described objectives are pieces to reach these two main targets.

2.2.1 O2.1 - Improved spatial resolution, initialization and forcing of weather fore-

cast

As indicated in the introduction, one main EVEREST objective is to evaluate the impact of a possible FPGA
acceleration of WRF. In practice, this work could be done with the pre-existing WRF configuration operated by
NUM over France, configuration to operate then on EVEREST infrastructure. But it was decided to exploit the
EVEREST project to configure a specific WRF forecast simulation over France which could be better than the
NUM WRF forecast baseline. The main differences of the EVEREST configuration are then:

1. Use as global input, the IFS forecast (Integrated Forecasting System) operated by the European Center
ECMWF (European Centre for Medium-Range Weather Forecasts), instead of the GFS forecast operated
by the US NOAA center. Over Europe, it is considered that ECMWF forecast is better than the NOAA
forecast, but the access is not the same since it is free cost for the GFS and paid cost for the IFS. Anyway,
test the IFS use (freely accessible in the framework of a research project like EVEREST) for the NUM
application is important to evaluate the interest in future. It is even more important that recently ECMWF
announces in 2024 plans to have some forecasts in open data.

2. Use an assimilation procedure based on 3DVAR (three-dimensional variational data assimilation) pro-
cedure instead of single nudging at borders of the domain. For this assimilation, the observed data
use are also different. It was initially expected to Wunderground surface stations and the MeteoFrance
precipitation radar measurement.

To achieve this objective, the starting point was the existing WRF workflow developed by CIMA and IT4I during
the LEXIS project1, and operated by IT4I on its infrastructure. But, it was requested first by IT4I to rework this
workflow and its management (see objective O.2.4). The adaptation of the new workflow to the France use
case has been done in a second step, explaining the achievement date presented below.

1LEXIS project: https://lexis-project.eu/web/
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ITEM DESCRIPTION

Method
Pushing to the limits of meteorological predictions with a fine resolution (at
least 1-3 km) to be more representative of local predictions, add assimilation
procedure, add IFS forcing

Priority Must Have

Baseline NUM forecast at 3km without data assimilation and GFS forcing

KPI
Improvement of accuracy of weather (wind speed and direction mainly)
forecast

Notes
Need to simulate new WRF simulations for some dates to compare to
baseline which is the current NUM forecast

How To Measure
Comparison of RMSE (Root Mean Square Error) on wind direction, wind
speed and air temperature between baseline and EVEREST execution

Involved
EVEREST
Components

New WRF-IFS workflow for France deployed on EVEREST servers

Target Value Improvement on RMSE between 10 to 20 %

Reached Value

The WRF workflow has been adapted for France domain in order to integrate
modification done on assimilation and IFS download parts. Daily automatic
forecasts are executed on EVEREST infrastructure to generate WRF-IFS
forecast over France. About RMSE, the improvement is in average:

1. For temperature, around 2% for the first 24 hours of forecast, and 6%
for the second day of forecast.

2. For wind direction, around -2% for the first 24 hours of forecast, and 1%
for the second day of forecast.

3. For wind speed, around 10% for the first 24 hours of forecast, and 13%
for the second day of forecast.

Intermediate steps:

1. Data assimilation procedure: For the assimilation, the first task was to validate the observed data use
in the procedure. At the start, the objective was to use the MeteoFrance radar observation. But it
appears that it was not possible to get an easy research access during the EVEREST project, and
the commercial cost was outside the planned budget. At the end, it was decided to not use this data
during the assimilation, which can be understandable since NUM will never be in position to buy such
data compared to the air-quality price market accepted by final customers. The consequence was for
CIMA to change the configuration of the pre-existing assimilation procedure for France domain. This was
performed in July 2023 with the production of new WRFDA execution script developed by CIMA.

2. IFS data: Initially it was expected no specific work on this part compared to the pre-existing LEXIS
workflow. But, in 2022, ECMWF informs us that the specific WCDA api developed by ECMWF during
the LEXIS project will not be maintained. It was requested to use the official ECWMF API (https:
//www.ecmwf.int/en/forecasts/accessing-forecasts) to access the forecast (which remains free for
research activity). In august 2023, the new download script (including extraction of parameters requested
for the France execution) was released by CIMA for integration in WRF workflow by IT4I.

3. Adaptation of the WRF-IFS workflow for France: Based on the new WRF workflow using Airflow [1], IT4I
adapts it to integrate the new assimilation procedure and the new IFS download procedure. The workflow
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execution was also configured according to the need of the air-quality use case: from the beginning of
2024, a daily execution of the new WRF-IFS workflow for France is activated on EVEREST infrastructure.

Result:

The baseline is the NUM forecast at 3km horizontal grid (2.5km for EVEREST WRF-IFS) with observational
and analysis nudging of surface data for assimilation and use of GFS for global forcing. The target KPI is an
improvement of accuracy of weather forecast (wind speed and direction mainly) of the new EVEREST WRF-
IFS configuration for France, with an expected improvement on RMSE between 10 to 20%. Since operational
execution starts at the beginning of 2024, the performance is calculated only for around 3 months, during win-
ter season. The comparison is performed on 56 MeteoFrance weather stations.
The following table presents the global results for 3 parameters: wind speed, wind direction and air tempera-
ture. For each parameter, it is indicated:

• the variation of RMSE (-10% means a decrease – so an improvement – of the RMSE),

• for the first 24 hours of forecast (Day J) and for the next 24 hours of forecast (Day J+1),

• on average (for all stations), the best individual result and the worst individual result.

Day of
forecast

Result Wind Speed Wind direction Temperature

Day J Average -10.3% +2.1% -2.1%

Day J Best result -51.0% -14.5% -27.7%

Day J Worst result +62.5% +41.1% +28.2%

Day J+1 Average -13.5% -1.0% -5.8%

Day J+1 Best result -48.1% -20.6% -23.2%

Day J+1 Worst result +55.3% +44.0% +19.3%

Table 1 – Variation of RMSE for first and second days of forecast for 56 weather stations

For wind speed, the average improvement is around 10% which is in the limit of the expected KPI. For wind
direction and air temperature, the average performance is close to zero (+2% and -2% respectively) for the first
24 hours of forecast. For the forecast from 24 to 48 hours, we observe a light improvement on RMSE of -1%
for wind direction and -6% for temperature in average. When we observe the extreme results, we clearly see
a large dispersion of the score with a RMSE which can be improved by 51% for one station on wind speed,
but also degraded by 62.5% for another station (on wind speed too). This can be observed also on the next
figure, presenting for Day J+1, the distribution of the RMSE’s variation for wind speed, wind direction and air
temperature obtained for each individual station.

Figure 6 – Distribution of RMSE’s variation for wind speed, wind direction and wind temperature for forecast Day J+1 (24 to 48 hours) for 56 weather
stations
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Clearly, we see for the wind speed, a distribution much more concentrated on an improvement of the RMSE
(explaining the 10% of improvement in average), but for some stations it is a degradation. For wind direction
and air temperature, it is more a mix of improvement and degradation according to the stations, explaining the
average performance close to zero. We can note also that, when we consider the spatial distribution of the
score, we don’t observe a clear geographical impact. For example, all stations with an increase of RMSE are
not located in the same type of topography such as mountains areas and close to Mediterranean Sea which
are known as regions more difficult to simulate. We have stations with bad results even at the North of France
or close to Atlantic ocean coast.
It is difficult to explain these results at this stage, especially due to the limited period of forecast:

• Do for any reason the GFS forecast (used in NUM forecast) better than IFS forecast (used in EVEREST
forecast) for this period?

• Do the data assimilated in NUM forecast better than those in EVEREST forecast for this period?

Compared to the expected initial KPI, only for wind speed we can consider it is reached. Nevertheless, this
KPI is not the main one for the expected improvement on weather forecast. The objective O2.3 based on AI
approach is most important. We can conclude that the quality of the EVEREST WRF-IFS forecast for France
is sufficient to be exploited for the others objectives.

2.2.2 O2.2 - Effective run of the service in terms of computational performance

efficiency with a specific focus on the WRF workflow

The content of this subsection is the same as for objective O1.3 since it is related to WRF, which is a shared
component across the two Use Cases.

2.2.3 O2.3 - Moving towards ensemble prediction and AI machine learning ap-

proach

As described in Deliverable D6.3, the objective is to apply a machine learning approach to produce locally a
better weather forecast than a standalone WRF deterministic simulation. The developed AI approach consists
of aggregating an ensemble of weather forecasts using local weather measurement as a forcing parameter of
the aggregated prediction. This novel approach for NUM was developed during the EVEREST project. The
different members used for the aggregation are those accessible by NUM: local forecast such as the NUM
WRF forecast and global forecast such as the GFS forecast. In Deliverable D6.3, results obtained during the
development are presented. In this section are presented the final results adding a last member which is the
EVEREST WRF-IFS forecast for France.
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ITEM DESCRIPTION

Method
Design IA method to exploit fine and coarse meteorological prediction forced
by local observation and evaluate its performance

Priority Must have

Baseline No ensemble model available in the baseline implementation

KPI Improvement of the quality of weather prediction due to ensemble approach

Notes
Final ensemble model is built considering NUM forecast, EVEREST WRF
forecast, MeteoFrance forecast and GFS forecast

How To Measure
Comparison of RMSE on wind direction, wind speed and air temperature
between baseline execution and the aggregation output

Involved
EVEREST
Components

New ML air-quality model

Target Value Improvement of 50% on the RMSE.

Reached Value

The improvement on RMSE is:

1. Around 48% in average for temperature on the first 24 hours of
forecast, and 57% for the best hour.

2. Around 45% in average for wind speed on the first 24 hours of forecast,
and 57% for the best hour.

3. Around 15% in average for wind direction on the first 24 hours of
forecast, and 29% for the best hour.

Intermediate steps:

1. Development of the machine learning model: different mathematical approaches were tested, especially
according to the parameters. Indeed, if for temperature the temporal evolution is generally continuous, the
transition can be more disturbed for the wind, and even more for the precipitation with long periods without
events and some instantaneous peaks. We finally decided to focus on temperature and wind. The best
found configuration uses a Ridge regression with discounted loss, with objective to minimize the RMSE
(root mean square error) between the aggregated prediction and the observation over a period. During
the development, we also tested and defined how much previous cycles of a same model execution are
interesting to exploit. For example, for a forecast of day D starting at H00, do we use only the NUM WRF
forecast of day D H00, or also the cycle day D-1 H12, the cycle day D-1 H00, etc. Lastly, the machine
learning approach uses an incremental training window, that is to say that at each execution the training
is performed using last historical data. A first exploitable model was available in august 2022.

2. Collection of historical data: Even if we use an incremental training window, the best is to start with a
longest period as possible. This requires to collect and store the numerical weather forecast for each
targeted local weather measurement site. At the start of the project, it was envisioned to evaluate the
performance only on the two or three locations concerned by the final air-quality forecast. At the end,
since it is here only an evaluation on weather parameters, we decided to use the same MeteoFrance
weather stations for this evaluation. If the collection and storage of the NUM WRF forecast (baseline) and
the GFS forecast was already performed by NUM, it was necessary to collect and store the MeteoFrance
measurement and the MeteoFrance forecast on NUM storage servers. This was totally operational at the
end of 2022. During 2023, NUM explored the way to increase performance for wind direction and tried to
apply the method on precipitation.

3. Perform first evaluation without EVEREST WRF-IFS forecast: Deliverable D6.3 presents the results of the
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performance obtained at the beginning of 2023, for the application of this approach without the EVEREST
WRF-IFS forecast on one year. The results are an improvement of the RMSE between 40% and 50% for
the temperature, from 44% (for 1st hour of forecast) to 26% (for forecast at 24 hours) for the wind speed,
and from 31% (for 1st hour of forecast) to 8% (for forecast at 24 hours) for the wind direction.

4. Produce EVEREST WRF-IFS forecast: the operational production of forecast for France the EVEREST
WRF-IFS workflow started at the beginning of 2024.

Result:

The next table presents the impact on RMSE of the ML air-quality model considering all members, except
the EVEREST WRF-IFS forecast, compared to the initial NUM WRF forecast, for the first three months of 2024.

Day of
forecast

Result Wind Speed Wind direction Temperature

Day J Average -44.4% -14.5% -44.5%

Day J Best Hour -54.8% -26.5% -53.4%

Day J Worst Hour -35.4% -8.0% -18.8%

Day J+1 Average -24.2% +0.6% -4.3%

Day J+1 Best Hour -29.1% -8.5% -13.4%

Day J+1 Worst Hour -15.9% +7.0% +5.0%

Table 2 – Variation of RMSE for first and second days of forecast for 56 weather stations when WRF-IFS forecast is not included

We can observe:

• for temperature: we have a clear improvement for the first 24 hours of forecast, with in average an
improvement of 44.5% of the RMSE. The scores are similar to the ones obtained on the full year (2022).
For the second day of forecast, as for the full year, the improvement is not so much visible, in average of
4%.

• for wind direction: the performance are lower on the first three months of 2024 compared to 2023. For
example for the first day of forecast, the improvement in average is close to 14% compared to around
19%.

• for wind speed: the impact is better for the three months of 2024 with an improvement in average of 44%
compared to 35%. For the second day of forecast, we observe also a clear improvement to apply the ML
approach, with an average improvement on RMSE of 24%.

We must remember that the developed approach considers a daily training of the ML model integrating the last
forecast day, so the score of one year is necessary biased compared to three months of use. Moreover the
meteorological comportment is probably also different.
Now, when we integrate the EVEREST WRF-IFS forecast in the ML approach, the impacts on RMSE are the
following ones for the three first months of 2024.

Day of
forecast

Result Wind Speed Wind direction Temperature

Day J Average -0.6% -1.1% -3.5%

Day J Best Hour -2.1% -3.1% -3.4%

Day J Worst Hour -0.6% +0.7% +1.1%

Day J+1 Average -1.9% -1.4% -3.7%

Day J+1 Best Hour -2.2% -0.7% -4.5%

Day J+1 Worst Hour -1.4% +0.7% -4.3%

Table 3 – Impact on the variation of RMSE for first and second days of forecast for 56 weather stations when WRF-IFS forecast is included
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The addition of the EVEREST WRF-IFS forecast does not improve strongly the RMSE, but again we are
here only on three months. Also, the performance of EVEREST WRF-IFS (see objective O2.1) is not so much
different from the baseline (NUM WRF forecast), and adding a new member can improve the ensemble result
only if this member adds better information at some instants. Anyway, in average, we have an improvement
around 3 to 4% for temperature. For wind direction, it is around 1 to 2%, whereas again for wind direction, it is
not so marked, excepted during the first 24 hours of forecast.

Compared to the initial KPI with an expected 50% improvement on RMSE, and if we focus on the first 24
hours of forecast, we can consider that:

• for temperature: we reach it, with an average improvement of 48% and of 57% for the best hour.

• for wind direction: we don’t reach it on this complex parameter, with an average improvement of 15% and
of 29% for the best hour.

• for wind speed: we reach it, with an average improvement of 45% and of 57% for the best hour.

The next table presents a secondary objective associated to the machine learning work during EVER-
EST. The initial idea was to exploit a WRF ensemble produced by EVEREST, in case of demonstrate strong
acceleration of WRF execution using FPGA.

ITEM DESCRIPTION

Method
Exploiting of the EVEREST computing platform in support of the ensemble
prediction

Priority Could have

Baseline No ensemble model available in the baseline implementation

KPI Capability of the EVEREST platform to generate WRF ensemble models

Notes
Running also multiple WRF forecast for the ensemble requires more
resources than what are available from the prototype platform of the project

How To Measure RMSE Comparison

Involved
EVEREST
Components

WRF FPGA acceleration

Target Value Extra reduction of RMSE by 25% to 50%

Reached Value none

Intermediate steps:

1. Requires objective O.2.2 to be reached: FPGA acceleration on full WRF execution for France was not
available.

2. Requires objective O.2.3 to be reached: as described above, the first operational execution of the EVER-
EST WRF-IFS forecast for France started at the beginning of 2024.

Results:

First, the machine learning approach used for the air-quality use case, compared to the energy use case, is
by construction an ensemble approach that considers external WRF forecasts (the NUM WRF forecast, and we
can consider the MeteoFrance local forecast as a WRF forecast). So the demonstration to exploit an ensemble
of local WRF simulations is already done with the previously achieved result. Second, for different reasons,
the EVEREST WRF-IFS forecast workflow was deployed and executed in a second step after the EVEREST
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WRF-GFS forecast for Italy. Indeed, it was decided to concentrate the effort of CIMA and IT4I to configure and
operate a WRF ensemble using the EVEREST workflow and infrastructure for the Italy domain and to test it
in the energy use case as it is presented in deliverables D6.3 and D6.4. Lastly, it was not possible to test an
end-to-end FPGA acceleration for the full WRF-IFS workflow.

2.2.4 O2.4 - Predictive capability better than the current service

This global objective covers three sub-goals:

1. The development and management of an EVEREST WRF workflow using FPGA acceleration, and its
evaluation.

2. The development and management of the full chain of execution concerning weather forecast, and its
evaluation.

3. The exploitation of weather forecast for the final air-quality forecast, and its evaluation.

Each of them is described and discussed independently below.

2.2.4.1 EVEREST WRF workflow with FPGA acceleration

Inside the full end-to-end workflow for air-quality forecast, WRF forecast takes around 95% of the global
computation. FPGA acceleration of the most intensive WRF components could improve the overall execution
time performance.

ITEM DESCRIPTION

Method
Exploiting of the EVEREST computing platform in support of the WRF
modelling workflow

Priority Must Have

Baseline NUM WRF forecast operates on NUM HPC server with CPU only

KPI Speedup of the forecasting with possible use of FPGA acceleration

Notes N/A

How To Measure
Full CPU time execution of the same WRF simulation without/with FPGA
acceleration

Involved EVERST
Components

A plug-in as an extension to the WRF framework to allow substituting
standard WRF modules for custom implementations (HW and HW). The
EVEREST Kernel Language (EKL), an extension of the CFDlang DSL (see
Deliverable D4.5), to express the kernels of RRTMG. Messner, a new
compiler front-end and MLIR transformation framework for EKL. Interfaces for
HLS tools for hardware generation (i.e. Bambu and Olympus). Basecamp
module for SDK integration

Target Value Speed up of factor 2

Reached Value

None. Only performance for acceleration of the selected WRF’s kernel was
achieved (see O1.3). Given that we focused on the CKD kernel within the
radiation module, it is estimated that the maximum achievable speedup is
10% (see dark blue slice in Figure 2).

Intermediate steps:
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1. Rework the LEXIS WRF workflow: In practice, IT4I has decided to change the orchestration part of
LEXIS Platform (responsible for running workflows) from the ATOS Yorc to Apache Airflow solution. This
new workflow and its deployment on the EVEREST infrastructure was available at the beginning of the
second semester of 2023, using the energy use case as baseline. In a second step, its adaptation to the
air-quality use case for France domain was performed as described in O.2.1.

2. Management of the FPGA execution inside the EVEREST WRF-IFS workflow with offload exchange be-
tween HPC infrastructure at IT4I and FPGA infrastructure at IBM. The demonstration of the management
execution of FPGA between IT4I and IBM servers was done during the second semester of 2023.

Result:

The synthesized FPGA module has been available for a couple of months before the end of the project.
This implementation was validated using the Vivado simulator. However, despite many efforts, a bug in the
Vivado Synthesis tools prevented us from evaluating directly in the hardware, and thus from integrating the
design within a production environment. Validation runs have been done with the newer RRTMG plugin.From
the results described in O1.3 for the kernel’s acceleration and considering the execution time of this selected
kernel in the full WRF execution it is estimated a speedup of 10% for the full WRF execution.

2.2.4.2 Full chain to produce weather forecast

The objective here is to operate the full chain of weather production as presented in the following figure (this
figure includes the final part of the use case which is the air-quality simulation) and evaluate its performance.

Figure 7 – Full air-quality forecast workflow

The full chain covers the WRF simulation on EVEREST infrastructure, the transfer of the outputs on NUM
server, and the execution of the ML air-quality model to produce local weather forecast at specific sites.
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ITEM DESCRIPTION

Method
Exploiting of the EVEREST computing platform in support of the overall
modelling workflow

Priority Must have

Baseline
Original Forecasting on NUM resources without ensemble approach and no
anomaly detection

KPI
Availability of the end-to-and weather prediction workflow that exploits the
EVEREST WRF-IFS simulations including the IA approach developed in
O.2.2

Notes

How To Measure
Comparison of execution time and Comparison of RMSE on wind direction,
wind speed and air temperature between the baseline and the full EVEREST
executions.

Involved
EVEREST
Components

new EVEREST WRF-IFS workflow, WRF FPGA module, Anomaly detection
module, new ML air-quality model

Target Value
Keep performance of individual component, that is to say improvement of
RMSE of 50% coupled to a speedup of a factor 2 on the full chain.

Reached Value

Demonstration of FPGA acceleration is not reached (see first item of O.2.4).
Concerning RMSE (see O.2.3), we can consider that the target is obtained
with an improvement in average around 50% for temperature and wind
speed. Demonstration of the possible interest to use EVEREST WRF
workflow on IT4I infrastructure (CPU only) compared to NUM infrastructure.

Intermediate steps:

1. Operation of EVEREST WRF-IFS workflow on EVEREST infrastructure: see details in objective O.2.1
for execution without FPGA and objective O.2.2/O.2.4.1 for execution with FPGA. The daily operation is
active since the beginning of 2024.

2. Transfer of EVEREST outputs to NUM servers: as described in deliverable in D6.4, (i) Py4Lexis library
is implemented for the data downloading from LEXIS DDI storage (storage area of the EVEREST infras-
tructure for WRF outputs) to NUM server; After this transfer, (ii) the EVEREST anomaly detection ADlib is
applied to check the validity of this data before to apply the ML air-quality model. These steps are active
at the end of 2023.

3. Production / collection of additional weather forecast: see details in objective O.2.3 about the collection
of additional weather forecast used by the ML air-quality model. It is operational at the end of 2022.

4. Operation of AI ensemble air-quality model on NUM server: see details in objective O.2.3. It is opera-
tional at then end of 2022 without EVEREST WRF-IFS outputs and from the beginning of 2024 with the
EVEREST WRF-IFS outputs.

Results:

1. Performance of weather forecast:
Logically the performances observed for this objective are those observed in the individual objective
O.2.3 with exploitation of the new WRF-IFS workflow and the air-quality ML module. For wind speed and
temperature, the objective of an improvement of RMSE of 50% is reached. For wind direction, which is
more complex to simulate at local scale at ground surface, the average improvement of RMSE is only
between 15 and 29%.
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2. Execution time:
First, we can mention that the use of anomaly detection library conducts to increase the full execution
time of 4 minutes which is reasonable compared to the WRF execution (see below). Secondly, the use of
ML air-quality model for ensemble aggregation is negligible with an execution time less than one minute
(see deliverable D6.4).
In consequence, the initial objective in terms of execution time relies on speed up of WRF due to FPGA
acceleration. As presented in objectives O.2.2 and O.2.4.1, if acceleration of individual kernel of WRF is
shown, the evaluation in an end-to-end full WRF execution was not possible. It is estimated a speedup
of only 10% of full WRF execution time. This is far away the initial target of factor 2.
We can mention here an intermediate result for NUM which concerns the evaluation of the execution
performance of the new EVEREST WRF-IFS workflow operated on EVEREST infrastructure compared
to the baseline (NUM WRF workflow on NUM server). Indeed, beyond the question of the weather
performance, it is interesting for NUM from operational point of view to see if the EVEREST management
and execution chain can be used in future commercial exploitation. Considering the infrastructure used
for the NUM baseline and for the EVEREST one with CPU only (see deliverable D6.4), the execution
time (for 48 hours forecast) is around 3h20 for the baseline compared to 2h / 1h40 for the EVEREST
configuration. Of course, the comparison is biased due to the fact that the configuration of the two WRF
executions is not the same, and the number of nodes used is different also. Nevertheless, this result
shows that the new EVEREST management of the workflow on distributed environment does not lead to
important additional execution time, which was not the case in the previous LEXIS project (https://lexis-
project.eu/web/). Moreover, the new WRF-IFS workflow allows to manage each part independently, such
as for example manage in advance the download of input data and manage WPS to prepare WRF input
for any WRF runs which can use it, or a better management in queue for operational execution every day.
Future work for NUM with IT4I is to consolidate additional points (cost use of CPU, way to change easily
WRF configuration, etc.) in order to explore the final interest to use IT4I’s service for WRF exploitation.

2.2.4.3 Final air-quality forecast

This is the final objective of the EVEREST project for the air-quality use case. Based on expected improve-
ment on weather forecast, the goal is to improve the performance of air-quality forecast of emission dispersion
from industrial site.

ITEM DESCRIPTION

Method
Statistical assessment of the added value of EVEREST forecasting and
ensemble forecast on simulated air quality

Priority Should have

Baseline Original Deterministic NUM Forecasting

KPI Improve the quality of the forecasts of real pollution events

Notes
Large set of historical data and runs should be used within a selected period
for a robust statistical assessment

How To Measure
Reduction of number of forecasts of false pollution events and increase of
number of forecasts of real pollution events

Involved
EVEREST
Components

All weather forecast components, end-to-end workflow with air-quality
execution

Target Value 25% improvement of quality of the air-quality forecast

Reached Value
No available statistics. However, the execution is operational (see comments
on results).
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Intermediate steps:

1. Identify industrial sites for demonstration: For demonstration, it is important to have industrial sites for
which (i) ML air-quality model can be applied, that is to say that local weather measurement is operational
and available, (ii) emission forecast input has limited uncertainties in order to limit performance air-quality
forecast to only the weather forecast, and (iii) availability of parameters to evaluate statistically the per-
formance of the air-quality forecast such as pollutant air measurement or survey of pollution event. At
the start of the project, Unfortunately, TOTAL energies company due to its recent deployment in energy
market decided to not let NUM uses one of their sites for the EVEREST project due to presence of DUF
in the project. In 2021, a list of possible industrial sites was established, and operational collection of
data for the demonstration was activated.

2. Prepare and adapt NUM air-quality forecast application: As described in deliverable D6.4, the main core
of air-quality forecast has been isolated in order to simplify execution. Configuration of envisioned sites
in ADMS model has been done and scripts has been prepared to execute air-quality forecast based on
deterministic NUM weather forecast, deterministic EVEREST WRF-IFS forecast, or on the ML air-quality
model. Daily operational execution was possible at the end of 2022.

3. Availability of operational EVEREST WRF-IFS forecast for France: see objective O.2.1 for details, the
daily production of the EVEREST WRF-IFS forecast for France is available at the beginning of 2024.

Results:

Unfortunately, it is not possible to produce statistics on the air-quality forecast in link to the late availability
of EVEREST WRF-IFS forecast:

• At the beginning of 2024, on the 4 identified industrial sites: (i) one site is no more followed by NUM’s
system due to the evolution of the site with investment done in 2022 and 2023 on emission treatment
system which renders the NUM application obsolete, (ii) one another site is in long period of maintenance,
and (iii) one site has malfunction concerning its weather measuring station so exploit the ML aggregation
model is not possible.

• It was decided at the start by NUM to focus the EVEREST demonstration on daily operational execution
and not to perform past simulations for the evaluation, which will necessitate configuring workflow and
running historical EVEREST WRF-IFS simulation for simulating past events with sufficient outputs for
training before these events. Normally, the objective to have an EVEREST WRF-IFS forecast in operation
during the year of 2023 will be sufficient to cover a large period for demonstration. Beyond the fact of
having 3 months of daily execution, for the remaining identified site, the winter season is not the best
season in terms of pollution events, and so to evaluate air-quality performance.

Today, no statistic is available to evaluate the final performance on air-quality forecast. Nevertheless, the main
objective for NUM of the EVEREST project is first to have an improvement on the weather forecast, which
is reached and shown after in application of ML air-quality model (see objective O.2.3). Secondly, since air-
quality forecast strongly depends on the weather forecast, it is reasonable to say that the observed results on
weather forecast will necessarily lead to an improvement of air-quality simulation. In practice, due to this good
performance of the ML approach, NUM has started to apply it for some specific clients outside the EVEREST
project, and as indicated in deliverable D7.7, its exploitation is clearly planned by NUM.
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2.3 Traffic Modelling

For the traffic modelling use case SYG and IT4I ambitions were to optimize and accelerate several parts
of the traffic modelling eco-system. The main goals were to a) accelerate machine learning calculation of
traffic prediction model operating on a big data as well as the application of prediction inference function used
intensively by other subsystems; b) accelerate data pre-processing part, which deals with ingesting big data
while performing costly AI map matching operations; c) accelerate critical parts of the traffic simulator, which is
used for data boosting in the process of learning the traffic prediction model; d) accelerate (alternative) route
calculation. As such, the EVEREST project focused on the traffic modelling part with five specific objectives:

1. Improve the overall performance of the traffic simulation model.

2. Improve the overall performance of neural network traffic prediction model training.

3. Improve data management and computational services and reduce programming effort.

4. Improve the overall performance of map matching kernel.

5. Improve the overall performance of the probabilistic time-dependent routing Kernel.

The following described objectives are pieces to reach the use case targets.

2.3.1 O3.1 - Improve the overall performance of the traffic simulation model

In order to fulfill Objective 3.1, specific methods have been defined and evaluated. A total of 4 methods have
been drafted:

1. Optimized stream of queried data from big data sets into processing elements.

2. Exploitation of an external traffic prediction service for each road.

3. Evaluation of the performance for traffic simulation test case.

4. Improve overall system precision by incorporating weather data from WRF model.

ITEM DESCRIPTION

Method Optimized stream of queried data from big data sets into processing elements

Priority Must Have

Baseline
Traffic simulator without the service for data preprocessing and aggregation
of FCD (Floating Car Data) data.

KPI Availability of the module

Notes
Module to processes FCD data collected from a real environment to calculate
speeds for each road segment.

How To Measure Module accessible/callable from Traffic simulator

Involved Everest
Components

Accelerated Map-match component

Target Value Service for FCD data preprocessing and aggregation is developed

Reached Value Service for FCD data preprocessing and aggregation is available

Description:
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This item relates to the development of a module that processes FCD data collected from a real environment
and calculates speeds for each road segment. The speed information is then made available to Traffic simulator
through a service. In the future, traffic simulator may optionally use it for augmenting the origin-destination
matrix based speed inference calculation further to improve functional precision by calibrating it with another
in-field sensory information.

Intermediate steps:

• Prepare script to execute Map-Matching processing which converts FCD data into road segment speeds,
and exports it in a CSV file format into a date/time organized folder structure.

• Make CSV files available for traffic simulator for download and use.

Results:

• Road segment speeds data is an output of Map-match service preprocessing execution (see Objective
O3.4)

• The output is available in Results folder on the path as per configuration of the VM environment executing
Traffic modeling Eco-system

• Output files are organized in the form of: one CSV file per day, while each file contains speeds on
potentially all roads segments in all time instances across 24 hour time frame

• Traffic simulator granted direct access to the folder structure and can retrieve the data from it in one
request as needed

ITEM DESCRIPTION

Method Exploitation of an external traffic prediction service for each road

Priority Should Have

Baseline Traffic simulator without the neural network Traffic Prediction

KPI Availability of the integration with a neural network Traffic Prediction

Notes
Before the project, the non-deterministic version of the traffic simulator used
only PTDR algorithm. The new deterministic version of the simulator has to
integrate both PDTR and Traffic Prediction.

How To Measure Module Accessible/callable from Traffic Simulator

Involved Everest
Components

Accelerated Traffic Prediction Module

Target Value API for traffic prediction engine is available

Reached Value API for traffic prediction engine is available

Description:

Traffic prediction is implemented as a service, which in one request provides 1-hour prediction for all major
roads in city. The service is addressed within the Objective O3.2 for accelerated optimization. The optimized
version of Traffic prediction has two options a) being deployed as a cloud service b) used as a library function.
While the service has a general use, Traffic simulator is the one which can use the service intensively as an
option further to increase its functional quality.

Intermediate steps:

• Implement and provide API for querying Traffic Prediction engine
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• Traffic Prediction service is deployed and can be tested through LEXIS Platform

Results:

• Traffic simulator is ready to utilize accelerated Traffic prediction service of both variants: cloud-based and
bus-attached FPGA

• Traffic prediction service as cloud service option is being deployed on IBM cloud-FPGA platform using
zero-MQ socket implementation

• Traffic prediction as a library function executable on FPGA bus-attached architectures can be utilized
when Traffic simulator is being run on IBM platform.

• Cloud-based service can be run through LEXIS Platform as a demonstrator.

ITEM DESCRIPTION

Method Evaluation of the performance for traffic simulation test case

Priority Must Have

Baseline 50K vehicle on a single instance of the original traffic simulator

KPI Number of vehicles possible to simulate thanks to EVEREST improvements

Notes
The baseline refers to the maximum amount of vehicles that was possible to
simulate before the improvements carried out within the project

How To Measure Simulator capability to handle defined number of vehicles

Involved Everest
Components

Traffic simulator, evkit

Target Value Execute traffic simulation with 100,000 (100K) vehicles with evkit distribution

Reached Value
Executed traffic simulation with 250,000 (250K) vehicles with evkit
distribution

Description:

The performance of the traffic simulator is bottlenecked by two kernels - the computation of alternative
routes and the Monte Carlo simulation kernel (also called PTDR kernel). EVEREST optimizations have im-
proved the performance of the simulator by introducing the ability to offload the computation of these two
kernels to multiple CPU cores and also to multiple nodes in a cluster, using the evkit tool, which was devel-
oped within the EVEREST project2. Below we will compare the performance of the simulator in two separate
cases: with a parallelized PTDR kernel, and with a parallelized alternative routing kernel.

Intermediate steps:

• Integrate evkit into the traffic simulator.

• Enable distributed computation of traffic simulation.

• Parallelize the alternative routing kernel in the traffic simulator.

• Parallelize the PTDR kernel in the traffic simulator.

• Execute traffic simulation with at least 100K vehicles and assess performance improvement against base-
line without a parallelized alternative routing kernel.

Results:
2The PTDR kernel was also offloaded to an FPGA, this will be discussed in a later section.
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• Parallelized PTDR kernel.

• Parallelized alternative routing kernel.

• Successful simulation with 250K vehicles (5× the baseline) with positive indicators of the ability to seam-
lessly support an even larger number of vehicles.

• Over 100× speedup of the required time to compute each simulation step

PTDR parallelization

To evaluate the performance of the PTDR Monte Carlo kernel, we have gathered a set of over 11,000 vehicle
routes, from an execution trace of the traffic simulator. These routes were used for benchmarking the scaling
of the PTDR Monte Carlo simulation kernel across multiple cores (each worker corresponds to a single CPU
core), using evkit.

Figure 8 shows the results of the benchmark. All 11,000 routes were executed using evkit, which com-
puted the PTDR kernel across multiple evkit workers, each using a single CPU core. The horizontal axis
shows the amount of evkit workers used and the vertical axis displays the duration to calculate the Monte
Carlo simulation for all input routes. Three configurations were benchmarked, with an increasing amount of
Monte Carlo samples (more samples generate more accurate simulation, at the cost of longer computation).
The results show that evkit can efficiently scale the computation of embarrassingly parallel kernels. The
benchmark was executed on the Karolina cluster3, on a single compute node with 128 cores and 256 GB
RAM. Note that even though all workers were on the same node, evkit could also easily execute them on
separate nodes.

Figure 8 – Scaling of the PTDR kernel across multiple workers

Alternative routing parallelization

Several rounds of experiments were executed in order to assess the performance of the traffic simulator while
parallelizing the alternative routing with evkit versus a baseline without evkit. There have been, among
others, experiments with 2K, 5K, 10K, 50K, 60K 100K, and 250K vehicles. For easier readability, we present
an overview of the main results with a 60K dataset as well as a 250K dataset in this deliverable.

Experiment: 60K vehicles

One of the designed experiments considered a dataset with 60K vehicles, where in the first 5 minutes the
number of active cars increases to 20K and ramps up to 60K active vehicles within 30 min of simulation.

The following job configurations were launched on the CPU partition of the Barbora4 supercomputer, located
at IT4I’s premises:

3Karolina HPC cluster - documentation: https://docs.it4i.cz/karolina/introduction/
4Barbora HPC cluster - documentation: https://docs.it4i.cz/barbora/compute-nodes/
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Attribute Value Attribute Value
round-frequency-s 5 los-vehicles-tolerance-s 5

k-alternatives 3 travel-time-limit-perc 0.1

map-update-freq-s 15 saving-interval-s 100

Table 4 – Experiment: 60K vehicles - simulation setting

1. Single node, single worker, Dijkstra (no evkit), 3 alternatives.

2. Single node, single worker, Plateau, 3 alternatives.

3. Single node, 114 workers, Plateau, 3 alternatives.

4. 2 nodes, 114 workers, Plateau, 3 alternatives.

5. 4 nodes, 114 workers, Plateau, 3 alternatives.

6. 8 nodes, 114 workers, Plateau, 3 alternatives.

7. 16 nodes, 114 workers, Plateau, 3 alternatives.

Note that we have used 95% of CPUs (114) of each node, to leave 5% available for the system. The third
entry of each configuration is the used routing method. The Dijkstra method uses the networkx library for
routing in Python, and does not leverage evkit. The Plateau method uses a C++ routing implementation, and
is parallelized using evkit.

Each of the jobs considered the simulation setting described in Table 4 and explained hereafter:

• Round-frequency-s is the interval (in seconds, of simulation time) for vehicle selection to be moved in
one simulation step.

• k-alternatives is the number of alternative routes calculated for each vehicle.

• map-update-freq-s is the frequency of updating the map with current speeds (in seconds, in simulation
time).

• los-vehicles-tolerance-s is the time tolerance (in seconds, of simulation time) to count which vehicles (i.e.,
their timestamps) are considered for the calculation of Level of Service (LoS) in a segment.

• travel-time-limit-perc represents the time (%) differential (in seconds, of simulation time) of the time be-
tween the current route and the fastest alternative route - meaning that in example vehicles only change
to another path if the alternative path is 10% faster.

• saving-interval-s represents the time interval in which the state of simulation is periodically saved.

Table 5 presents the results of the execution of simulation under the aforementioned conditions with a time
limit of 60 minutes or 512 simulation steps.

Table 5 shows that in all the cases where evkit is applied, there is an improvement either in simulation
time or number of simulation steps executed. Comparing the first and second row of the table we observe that
despite taking the same execution time, the number of simulation steps increases from 16 to 230, meaning
that more vehicles have moved along their routes within the simulation. The required time per simulation step
(last column) is one of the most relevant metrics. As we can observe, we were able to achieve a 105 times
speedup when compared to the baseline version.

When comparing the distribution plot of the scenario without evkit, depicted in Figure 9, with a scenario
with evkit such as the one with 2 nodes (as shown in Figure 10), we can observe a significant improvement in
the most expensive computational task of the baseline version: computation of alternative routes, represented
by the alternatives function. On the left (a), we observe that the alternatives function takes more than 95% of
computational time, while end_step (to save the map) takes approximately 5%, meaning that all other functions
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Number
of Nodes

Workers
per node

Computation
Time

(seconds)

Steps
Completed

Computation
Time Speed

up

Time per
Step

(seconds)

Time per
Step Speed

up

1 1 (no
evkit) 3600 16 Baseline 225 Baseline

1 1 3,600 230 1.00x 15.65 14×
1 114 1,736 512 2.07x 3.39 66×
2 114 1,272 512 2.83x 2.48 90×
4 114 1,170 512 3.08x 2.28 98×
8 114 1,118 512 3.22x 2.18 103×
16 114 1,097 512 3.28x 2.14 105×

Table 5 – Experiment: 60K vehicles - multiple scenarios of distribution vs baseline without evkit (time limit: 1 hour, step limit: 512 steps) - Barbora
supercomputer (CPU partition)

(a) Simulation without evkit (baseline): 1 node, 1 worker (Python version of alternative routes: Networkx
Dijkstra) (b) Simulation with evkit: 1 node, 1 worker (Plateau (C++) version of alternative routes)

Figure 9 – Baseline version vs evkit version of traffic simulation

take a residual amount of time and the computation of the alternatives is the function requiring the most
optimization.

On the other hand, when comparing two scenarios using evkit (1 node vs 2 nodes with 114 workers each),
we can see in Figure 10 that while the computational effort decreases for the computation of the alternative,
other functions of the simulator become more evident. In particular, the functions that stand out the most
are the advance_vehicle and end_step. This means that evkit has not only performed its intended outcome
but has also supported the identification of other computational tasks that will become a subject of further
optimization work on the traffic simulator (beyond the EVEREST project scope).

Experiment: 250K vehicles

The other set of results considers a dataset with 250K vehicles (5 times more than the number of vehicles
used for the baseline). This simulation considers a scenario in which vehicles are navigated through Prague, in
different directions, from multiple origins to multiple destinations. The scenario simulates a time period between
5am until 9pm, where 250K vehicles are injected into the simulation over a period of 16 hours.

The job considered the simulation setting presented in Table 6; the difference to the previous one is high-
lighted in bold. The main change is in the saving interval, which is longer and not required to be so frequent
under traditional simulation vs benchmark. Similarly, the second change is in the map update frequency which
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(a) Simulation with evkit: 1 node, 114 workers (b) Simulation with evkit: 2 nodes, 114 workers each

Figure 10 – evkit enhanced version: 1 node vs 2 nodes, 114 workers each

was changed from 15 seconds to 60 seconds - an appropriate value under normal situations and not for
benchmarking when we want to stress the system.

Attribute Value Attribute Value
round-frequency-s 5 los-vehicles-tolerance-s 5

k-alternatives 3 travel-time-limit-perc 0.1

map-update-freq-s 60 saving-interval-s 1,000
Table 6 – Experiment: 250K vehicles - simulation setting

The following graphic presents the results of the execution of the simulation under the aforementioned
conditions.

Number
of Nodes

Workers
per node

Computation
Time

Steps
Completed

Time per Step
(seconds)

4 114 11h:02m:04s 58,112 0.68

Table 7 – Results for complete 250K vehicles simulation with evkit

Table 7 shows that the simulation was successfully completed within 11 hours with approximately 58,000
steps. This translates into being able to compute each step in only 0.68 seconds in having requiring only 11h
of computation time for a 16 hours of real-life simulation.

Figure 11 depicts different perspectives of the simulation with 250K vehicles. For instance, on the top left,
it is possible to observe that traffic-intensive was higher in two periods (morning period and afternoon period)
- as the simulation was execution from 5am until 9pm. There were more than 10,000 vehicles active in each
computational step during the morning period, with up to 6,000 of them requiring the computation of alternative
routes. At the same time, it is possible to see on the bottom left part that the computation of the alternatives
is less expensive than the advance_vehicle function (which is aligned with the previously presented results).
The upper right and lower right graphs showcase an indication of the duration of the simulation steps, which
(as shown in Table 7) take less than 1 second to compute.
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Figure 11 – From top left and right to bottom left and right: a) Number of active cars throughout the simulation; b) Frequency/duration of each simulation
step; c) Comparison of 3 main functions of the simulator: alternatives computation, advance vehicle, and select route; d) Histogram with duration of the
steps.

Figure 12 depicts a snapshot of the video that shows the visualization of the simulation with 250K vehicles.
Visualization details have already been described in D6.3. Nevertheless, it is relevant to showcase a snapshot
in this document as the figure highlights, for instance, the total number of vehicles, the number of active vehicles
at the specific time of the simulation, the simulation scenario details (e.g., nodes, workers, alternative routes,
map update frequency or travel time limit) as well as other metrics like the total driving time or the total amount
of kilometers driven by the vehicles.
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Figure 12 – Snapshot of the 250K vehicles simulation, around 10am, Prague, Czech Republic.

ITEM DESCRIPTION

Method
Improve overall system precision by incorporating weather data from WRF
model

Priority Could Have

Baseline Traffic simulator without weather forecast model connected

KPI Availability of a weather forecast module connected to the simulator

Notes
This objective is not part of the EVEREST project, however it will be
evaluated the effort and impact of having it.

How To Measure Module Accessible/callable from Traffic Simulator

Involved Everest
Components

Weather service component

Target Value
To define the approach on how to implement the processing of weather
forecast information into the traffic simulator.

Reached Value The implementation details have been analysed and defined.

Description:

Even though this particular item was not part of the EVEREST project, it has been proposed as a "Could
Have" and the involved partners have assessed the necessary aspects to consider its implementation.

Intermediate steps:
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• Define the type of events and associated information.

• Specify the impact of events in traffic simulations.

• Define how the traffic simulator considers weather forecast events.

• Assess the impact and effort of incorporating weather forecast events into the traffic simulator.

Results:

• Event types:
Events such as wind speed (e.g., visibility distance or lane obstruction), precipitation (e.g., visibility dis-
tance, pavement friction), fog (e.g., visibility distance), pavement condition (e.g., road damage) or water
level (e.g., lane submersion).

• Impact of the events:
The aforementioned events have the following impacts on the traffic simulation: Traffic speed change,
speed variance, travel time delay or road capacity changes.

• Usage within the traffic simulator:
The traffic simulator may include an event handler that periodically receives weather forecast events
and maps them into specific geographical regions. These regions are then converted into simulation
segments and the simulation conditions (mentioned above) can be adjusted accordingly on the internal
representation of the map. In this way the modifications to the current version of the simulator are really
limited.

• Lessons learnt:
Given the nature of this method (i.e., could have), the implementation has not been prioritized. Never-
theless, the foundation for the implementation work to proceed has been laid out and the added feature
may be added beyond the timeline of the project.

2.3.2 O3.2 - Improve the overall performance of neural network traffic prediction

model training

AI kernel of the focus is the neural network (NN). The specificity and the challenge of the kernel component
is that for speed predictions for the entire city we need to employ tens of thousands of prediction models
simultaneously, while parallel architectures of course have limits in a number of kernels to be exploited. The
optimization goal is to execute this whole prediction batch in a sub-second cycle as this function is a part of
the real-time online services, and of course with cost efficiency. Need for parallelization and cost-efficiency is
well addressed with FPGA acceleration.

In order to fulfill the objective, two methods have been defined and evaluated:

1. Employment of accelerated AI computation kernels as enabler for a fast loop prediction calculation utiliz-
ing heterogeneous architectures with efficient data management

2. Evaluation of computational performance, precision and energy cost with respect to existing implemen-
tation
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ITEM DESCRIPTION

Method
Employment of accelerated AI computation kernels as enabler for a fast loop
calculation. The utilization of heterogeneous architectures with efficient data
management

Priority Must Have

Baseline CPU execution (Python)

KPI Availability of prediction kernel on FPGA and its seamless integration toolkit

Notes
Focus was the cloud-based FPGA implementation option. Bus-attached
FPGA implementation option has been performed only experimentally with
manual support

How To Measure Availability of a command line compilation cookbook

Involved Everest
Components

Traffic prediction module, dosa, olympus

Target Value
prediction kernel is FPGA translated supporting parallelism by allowing
multiple instances

Reached Value
prediction kernel is FPGA translated supporting paralellism by allowing
multiple instances

Description

Traffic prediction component is about to execute distributed prediction for 10,000 (or more) different config-
urations of neural network kernel. This brings us the possibility to engage wide range of architectures starting
from fast sequential execution to highly parallelized solutions. EVEREST technology further offers us to en-
large this space with the possibility to use FPGA acceleration, and further more on two platforms: cloud-based
FPGA and bus-attached FPGA. EVEREST compilation flow brings the automation for FPGA acceleration op-
tions, which includes 1) conversion from Python function to the FPGA bitstream and 2) generating necessary
interfacing code for a client integration. With the cloud-based option a socket connection is generated, while
with the bus-attached option the host code interface is generated.

Intermediate steps

• Generic neural network inference python implementation servicing 10,000 prediction models

• Set up user interface for annotation of fixed-point, performance and power consumption

• dosa tool for converting python code to intermediate representation ONNX/MLIR

• dosa optimization and export for FPGA synthesis

• olympus integration of memory and HDL codes into deployable bitstream

• Deployment of the component on Alveo for and demonstrate an external use

Results

• Python TensorFlow and PyTorch implementations provided to serve both as a) benchmark and b) source
to EVEREST optimization. See GitLab references to source code in Deliverable D6.3, Section 3.5.1.

• Interface for optimization directives (fixed-point and performance, etc.) is provided by EVEREST Base-
camp tool through json-constraints file. See details in Deliverable D6.4, Section 3.5.

• dosa end-to-end compilation flow is demonstrated with Jupyter notebook environment (see GitLab refer-
ence in Deliverable D6.4, Section 3.5). It starts from using python-to-ONNX public tool and then applying
EVEREST optimization methodology on ONNX towards a) bistream directly, b) MLIR intermediate output.
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• For cloud-based FPGA service, dosa generates deploy script applicable to IBM cloud infrastructure.
Clients can thus access service through zetoMQ enable scoket client. See details in Deliverable D6.4,
Section 3.5.

• olympus is used for the bus-attached FPGA architecture target, which starts from MLIR representation
output of dosa. olympus generates library components to be used for an integration into a client applica-
tion.

Traffic prediction service integration

The following table details the different configurations that have been produced with the purpose of the evalu-
ation of the EVEREST toolchain and the performance optimization. Table 8 indicates which EVEREST tools
used to produce the current results, but the combination of dosa and olympus could also be applied to future
cloudFPGA deployments.

Acceleration case Tool Availability

CPU 1 kernel 4 cores baseline Python yes

cloudFPGA single kernel dosa yes

cloudFPGA multiple kernels dosa yes

bus-attached FPGA single kernel dosa & olympus yes (experimental)

bus attached FPGA multiple kernels dosa & olympus yes (experimental)

Table 8 – Architecture options of the Traffic prediction acceleration

With the cloud-FPGA implementation option, we use dosa to synthesize into an FPGA architecture. Table 9
presents post place-and-route results for a single Traffic prediction neural network kernel. Considering the
capacity of the standard cloud-FPGA kernel, the theoretical limit for parallel instantiation is 29.

Kernel Cycles LUTs FFs BRAMs DSPs Frequency

Theoret-
ical

Parallel
Limit

network-based
single kernel

70 11,579 10,777 0 0 156 MHz 29

Table 9 – Synthesis results of the NN-kernel

At the end of the day, dosa and olympus tools are wrapped in the EVEREST Basecamp facade tool, which
exposes the necessary user-level parameterization, such as fixed-point definition, and architecture and perfor-
mance targets.
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ITEM DESCRIPTION

Method
Evaluation of computational performance, precision and energy cost with
respect to existing implementation

Priority Must Have

Baseline CPU-based sequential execution of 10K prediction

KPI Speedup w.r.t. purely CPU based, % energy saving using FPGA acceleration

Notes
Using measurements we evaluated only the cloud-FPGA implementation
option

How To Measure Execution time and power measurement for 10,000 predictions FPGA vs CPU

Involved Everest
Components

Traffic prediction module, dosa, olympus

Target Value 5× speedup w.r.t. CPU based, 50 % energy saving using FPGA acceleration

Reached Value
24× speedup and 79% energy saving with the use of 8 kernel instances. The
CPU profiling measures have been taken on an AMD EPYC 7643 CPU.

Description

EVEREST tool options provide user with possibility to configure and evaluate various architecture targets.
There are two options in this case, either useing the cloudFPGA devices or bus-attached FPGA acceleration.
Both targets allow a play with parallelizing options, where the limiting factor is the size of FPGA chips being
used.

Intermediate Steps

• Measure performance on a selected performing CPU-based system for 10,000 predictions (time duration
and power consumption). The CPU profiling measures have been taken on an AMD EPYC 7643 CPU.

• Measure performance for 10,000 predictions using FPGA acceleration (time duration and power con-
sumption)

Results

• Baseline non-FPGA computation on Intel-based 4-core architecture takes approximately 6 seconds for
10K models prediction (for details see Deliverable D6.3 Section 3.5.2). Note that the target of 10K model
prediction is suitable for medium-size city like Prague, while larger cities might even require multiples of
10k models.

• The EVEREST performance target was to reach a 5× speedup. When deploying a single kernel on IBMs
cloudFPGA platform, we only reach a 3× speedup. However, the FPGA used for IBMs cloudFPGA card
fits 8 NN-kernels, which increases the speed up factor up to 24× and exceeds our target. Note that the
measurements also includes the network latency.

• Further speedup and energy-efficiency gains could be achieved by using the olympus tool to handle the
management of the NN coefficients across a shared pool of kernels.

• Finally, it would be beneficial to use the larger logic capacity of the bus-attached Alveo FPGA cards,
where more than 40 Traffic Prediction kernels could fit into a single FPGA. Post-synthesis estimations
provided a latency of less than 100 cycles at 220MHz for each prediction module.

• In conclusion, the FPGA implementation proves to be greatly more performing and energy efficient than
its CPU counterpart.
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Traffic Prediction performance

Table 10 shows the execution of 10,000 predictions benchmark for the defined architecture configurations.

Acceleration case Kernels
Performance

10k predictions
Energy (J) 10k

predictions
Speedup

4-core CPU single kernel
(baseline)

- 5.5s 617 baseline

cloudFPGA single kernel 1 1.9s 16.3 3×

cloudFPGA multiple kernels 8 0.23s 2.7 24×
Table 10 – Performance Evaluation of the Architecture options of the Traffic prediction acceleration. The CPU profiling measures have been taken on an
AMD EPYC 7643 CPU.

2.3.3 O3.3 - Improve data management and computational services and reduce

programming effort

The goal of this objective was to make it possible to execute the EVEREST use-cases in a distributed manner,
while allowing the offload of selected kernels to an FPGA accelerator device. This should ideally be possible in
a way that is transparent to the application developer and that does not require them to spend too much effort
to parallelize their application.

In order to fulfill the objective, three methods have been defined and evaluated:

1. Exploiting of an effective EVEREST computing platform to support distributed computation and optimized
data flows

2. Availability of EVEREST module that manages data exchange from and to accelerated kernels

3. Heterogeneous resources to be exploited in a simple way, e.g. with minimum number of lines of code

ITEM DESCRIPTION

Method
Exploiting of an effective EVEREST computing platform to support distributed
computation and optimized data flows

Priority Must Have

Baseline N/A

KPI Availability of end-to-end WFs for the Traffic use case

Notes Before the project, the modules were available as separate instances

How To Measure
Verify whether or not distributed computation is enabled on the traffic
simulator

Involved Everest
Components

Traffic simulator, evkit

Target Value Traffic simulator running with evkit on a distributed cluster

Reached Value
Traffic simulator running with evkit on a distributed cluster, with PTDR and
alternative routing kernels integrated, and with LEXIS integration.

Description

The evkit distributed runtime was created, and integrated with the traffic simulator. This allows the simu-
lator to execute its two most resource-intensive kernels (PTDR MonteCarlo simulation and alternative routing)
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on remote nodes of a cluster. The whole end-to-end traffic simulation workflow that uses evkit has also been
integrated with the LEXIS system, which allows users of the simulator to execute the workflow on a target
cluster in a very simple way.

Intermediate Steps

1. Design and implement interfaces for swapping kernel implementations in the traffic simulator

2. Integrate evkit into the traffic simulator

3. Distribute PTDR computation in the traffic simulator

4. Distribute alternative routing computation in the traffic simulator

5. Enable execution of the traffic simulator through LEXIS

Results

• The traffic simulator has gained the ability to use a different implementation of the PTDR (the Monte
Carlo simulation) and alternative routing kernels.

• The evkit distributed runtime has been created.

• evkit has been integrated with the traffic simulator, where it allows parallelizing of both the PTDR and
alternative routing kernels.

• Parallelization of the kernels can happen both on multiple cores and also on remote nodes of a cluster.

• It is possible to execute the whole traffic simulator workflow end-to-end through LEXIS.

ITEM DESCRIPTION

Method
Availability of EVEREST module that manages data exchange from and to
accelerated kernels

Priority Must Have

Baseline N/A

KPI
Availability of almost transparent accelerator integration in the application
code

Notes None

How To Measure
Test if an accelerated kernel can be executed on an FPGA using evkit
integrated with olympus

Involved Everest
Components

evkit, olympus

Target Value evkit integrated with olympus

Reached Value evkit integrated with olympus for PTDR and Map Matching.

Description:

EVEREST data exchange is provided on two levels. First, evkit transfers inputs from the traffic simulator
through the network to an evkit worker, where the kernel is computed, and then it also transfers the outputs
back to the simulator. Second, evkit integrates the olympus tool, using which it transfers data from the
host node to a bus-attached FPGA devices, and then again reads the computed kernel results back from the
accelerator. The traffic simulator code does not know anything about the specifics of the FPGA acceleration,
which is thus fully transparent. It also uses a very simple Python interface for exchanging data with the kernels
using evkit.

Intermediate Steps:
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1. Implement network data exchange between evkit and the traffic simulator.

2. Integrate evkit with olympus to enable FPGA kernel execution with data exchange.

3. Implement data (de)serialization needed for executing PTDR kernel on an FPGA.

4. Implement data (de)serialization needed for executing Map matching kernel on an FPGA.

Results:

• evkit implements support for offloading the PTDR kernel to a bus-attached FPGA device.

• evkit has been integrated with the olympus tool, and can transfer data both to and from a bus-attached
FPGA device.

• The traffic simulator has been integrated with evkit, and can use it to easily invoke kernels and exchange
data with them over the network (provide them inputs and read their outputs). The traffic simulator code
passes data to evkit in the form of Python objects, and doesn’t need to know about the specifics of
FPGA data transfer.

ITEM DESCRIPTION

Method
Heterogeneous resources to be exploited in a simple way, e.g. with minimum
number of lines of code

Priority Must Have

Baseline No FPGA accelerators in the code

KPI Number of kernels mapped to FPGA using the Everest Framework

Notes
Evaluated kernels are Traffic Prediction, MapMatching, and PTDR. We used
survey evaluation technique detailed in the Description section

How To Measure number of components mapped and evaluated

Involved Everest
Components

bambu, olympus, evkit

Target Value
Retargeting of Map-matching, Traffic Prediction, PTDR evaluated as
low-effort

Reached Value
Retargeting of Map-matching, Traffic Prediction, PTDR evaluated as
minimum/small effort based on the survey

Description

There are three traffic modeling use-cases (Map-matching, Traffic Prediction, PTDR) that are subject to
FPGA offloading and thus should be addressed by EVEREST compilation flow. These use-cases contain
computational kernels written in both C++ and Python, both of these languages are supported by EVEREST.

Ideally, it should be possible to offload these kernels to FPGAs with a low effort spent by the application
developers. This has been achieved up to various levels, depending on the specific use-case.

It is obvious objective that the ideal tooling would do perfect automation by not requiring the developer to do
any modification on the original code. This would really be ambitious. We identified the following categories,
which must be addressed and which need developer engagement to some extent:

• code adaptation for compatibility to automated FPGA transformation

• code adaptation for kernel identification

• support for fixed-point refinement
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With the survey of limited audience of developers we finally evaluated the above categories for a developer’s
effort as:

• none (1)

• minimal (2)

• small (3)

• medium (4)

• difficult (5)

Our goal is on average to have the score - less than 3.

Results

• The Map matching kernel is written in C++ using STL (Standard Template Library). EVEREST well sup-
ports compilation flow towards FPGA offloading, which is the job of bambu tool. All must-have source code
changes are the translation of STL functions (e.g. vector) into their ETL (Embedded Template Library)
counterparts. ETL syntax is very similar in nature to STL, it only adds the boundary limits to structures.
E.g. infinitely sized STL-vector needs to be declared as ETL-vector with a hard limit to e.g. 20 items.
This type of source code adaptation has been evaluated as minimal and acceptable to users.
Convenient support of EVEREST is also in the definition of kernels, which are required to be offloaded
to FPGA. The tool requirement is to express the code/kernel as a function, which defines all inputs and
outputs in the function argument list. Finally #pragma annotation needs to appear in front of the function
definition, which explicitly defines arguments as input or output and requests a specific interface protocol.
This type of source code adaptation may require restructuring of the code (creating functions), however,
with good designs this is typically already in place initially, or otherwise it leads to better modularity. By
developers this adaptation is evaluated as minimal and driving good design practice.
Optional modification of the source code can occur when redefining built-in C++ floating-types types into
fixed-point definitions. This is supported through the bambu libbambu C++ library. Application developers
can resort to this translation when they want to increase performance at the expense of some precision
loss. This conversion is syntactically acceptable as it at its minimum requires changes on variable dec-
laration only. However, going deeper into complex mathematical formulas, it is sometimes necessary to
split a formula atomically to create intermediate variables so that they can be explicitly defined in fixed-
point. There is no automation for the inference of optimal fixed-point definitions, so it is the responsibility
of application developers. To conclude the level of this modification can be tedious, yet acceptable, as it
only needs to be applied locally where required.

• The Traffic prediction kernel is written in Python using alternatively Tensorflow or PyTorch library. EVER-
EST tool represented with dosa optimizer component starts with ONNX representation, which can be
obtained automatically with the export functions of Pytorch or Tensorflow (i.e. "tf2onnx). Thus there is no
need for source code modification due to python feature support to represent dataflow function in ONNX
format. ONNX is then taken over by dosa to perform all necessary optimization operation leading towards
final FPGA bitstream output.

The kernel identification to be directed to acceleration is also addressed with the ONNX export. In case
of Tensorflow, there are some limitation for the function, which is subject to tf2conn function support, i.e.
the function needs to be expressed as Python function and annotated with the "@tf.function" decorator.
Wrapping kernel into a function is obviously a typical design practice and adding annotation to it is a
minimal modification.

dosa also supports an advanced feature of automated assistance on a fixed-point refinement of the kernel
dataflow. As a developer, you only need to present the required precision and testing data to dosa tool,
and it will automatically infer fixed-point characterization of the kernel without further developer interaction
(this feature is only supported for Pytorch models).
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• The PTDR Monte-Carlo simulation kernel was originally implemented in Rust, however it proved to be
too complex to offload it to an FPGA using the olympus and bambu tools. Therefore, it has been re-
implemented in C++ during the course of the EVEREST project. This C++ version originally used STL,
but it was modified to use ETL instead, in a similar fashion as the Map matching kernel, to make it
amenable for FPGA acceleration.

An FPGA bitstream can be generated from the C++ kernel using the bambu and olympus tools through a
series of scripts. The scripts should be tuned by performance engineers to obtain the best results.

As previously defined, we present the evaluation of developers’ effort per category for all the three use-
cases, see Table 11:

Usecase Language
Kernel

identification
effort

Kernel
transformation
compatibility

effort

Fixed-point
refinement

effort

Map matching C++ small minimal small/medium

Traffic prediction Python minimal none none

PTDR C++ minimal medium n/a

Table 11 – Evaluation of developers effort per use case

According to our methodology, the average score of the programming effort to adapt to EVEREST technol-
ogy is 2.2, which concludes the minimal to small effort.

2.3.4 O3.4 - Improve the overall performance of map matching kernel

The goal of the objective is to accelerate the Map-matching component (MMA), which is the type of batch
calculation component that processes millions of vectors each day converting them to road speeds, and which
takes several hours to execute on CPU. Our idea is to bring the duration of calculation into near-real-time terms.
MMA comprises several sub-components, which we call sub-kernels, i.e. GPS-projection, Trellis, Viterbi, Inter-
polator. EVEREST allows us a play on accelerating the overall component in a truly heterogeneous way, where
some sub-kernels can be offloaded to FPGA, while some might stay in CPU space. EVEREST compilation
flexibility allows us to investigate and evaluate multiple options to find the optimal configuration with respect to
proper heterogeneity and parallelism.

To fulfill the objective, two methods have been defined:

• Acceleration of Map-match kernel through optimization of its sub-components

• Evaluation of computational performance and energy cost
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ITEM DESCRIPTION

Method
Acceleration of Map-match kernel comprised of GPS-projection, Dijkstra and
Viterbi components forming Hidden Markov model.

Priority Must Have

Baseline Map Matching on CPU

KPI
Availability of a heterogeneously accelerated kernel and its well-defined
integration flow

Notes
Map-match component has finally been split into 4 kernels: GPS-projection,
Trellis, Viterbi, Interpolator

How To Measure Availability of intelligible cookbook on a compilation toolflow chain

Involved Everest
Components

Map-match module, bambu, olympus, dfg-mlir

Target Value Relevant kernel(s) of MMA component are FPGA accelerated

Reached Value All kernels of MMA are FPGA-translated

Description

Map-matching algorithm component (MMA) is about processing short GPS vehicle trajectories (vectors)
obtained from vehicle sensors (or Traffic simulator) and converting them into speeds. For a medium-sized
city (like Prague) this is about 1 million vectors, which takes several hours on standard CPU architectures.
EVEREST technology allows us to evaluate various architecture setups through annotation, defining which
of the sub-kernels we want to offload to FPGA space and with what parallelizing factor. Another inherent
parallelization option emerges from treating the sub-kernels as dataflow black boxes, which can be executed
in parallel wherever data flow dependency allows it. For measurement and performance evaluation we have
finally used benchmarking with 1,000 vectors.

Intermediate Steps

• Prepare FCD data input from Sygic or Traffic simulator

• Kernel(s) written in C++ ETL and functionally equivalent in CPU execution

• Kernel(s) synthesizable by bambu, and functionally equivalent in HDL simulation

• Ohua DSL pseudo-code for all kernels data interactions

• Ohua code lowering to olympus

• Synthesis of the whole MMA code into object files by Ohua/olympus/bambu

• Execution of the MMA with testbench data input and output

Results

• Benchmark input of 1,000 input vectors have been prepared and made public through ZENODO platform
(for details see Deliverable D1.4).

• C++ kernels were rewritten into C++ ETL, which has been verified to be functionally equivalent to the
original code through CPU execution. The source code versions are referred in Deliverable D6.3 Section
3.5.1. C++ ETL syntax is a variant of C++ STL library, which requires minor manual modifications (mainly
defining array boundaries of structures) while providing benefits of synthesizability to FPGA through
bambu.

• All kernels are synthesizable by bambu, and were proven, functionally equivalent in HDL simulation. Syn-
thesis figures are listed below in Table 13
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• Fixed-point optimization has been applied on GPS-projection kernel (using libbambu fixed-point library),
which was found as the most critical in performance as well as in FPGA area consumption as also
indicated in Table 13.

• EVEREST Basecamp end-to-end compilation (using the tools dlg-mlir and olympus) has been done
for several configuration variants. The architecture target chosen for this workflow was the FPGA bus-
attached compilation option. The architecture variants are indicated in Table 12.

• the MMA heterogeneous version was tested for functional equivalence being deployed in PDM premises
using the same Alveo FPGA cards as in the IBM cluster.

MMA component under acceleration consists of 4 sub-kernels, whereas each can be offloaded to FPGA
independently. Everest flow makes sure interfacing is generated automatically so that it makes seamless
integration of CPU parts and those FPGA offloaded. The following table details the different configurations that
have been produced with the purpose of the evaluation of the EVEREST toolchain. The table indicates whether
the kernel is executed in the host (CPU) or offloaded (FPGA), whereas the mark ’||’ denotes the parallelizing
option.

Acceleration case Projection Trellis Viterbi Interpolate

Baseline CPU CPU CPU CPU

Parallel projection CPU || CPU CPU CPU

Offloaded projection FPGA || CPU CPU CPU

Offloaded Viterbi CPU CPU FPGA CPU

Offloaded all FPGA FPGA FPGA FPGA

Table 12 – Compilation configuration options of the MMA kernel (’||’ denotes the parallelizing option)

We use the bambu tool to translate C++ descriptions to Verilog descriptions, which are then synthesized into
an FPGA bitstream. Table 13 presents post place-and-route metrics related to the MMA kernels in isolation and
fused together, which can be used to estimate an upper bound to the number of kernels that can be instantiated
in parallel on the FPGA (without considering the area occupied by memory controllers and integration logic).
The top-level component area does not precisely correspond to the sum of the areas of each sub-component,
since, in the former case, bambu can apply optimizations across sub-components. The execution time relates
to the processing of one input vector. The target board used is a Xilinx Alveo U55C. Each external memory
operation is assumed to take 1 clock cycle.

Kernel Cycles LUTs
Regis-

ters
BRAMs DSPs Frequency

Theoret-
ical

Parallel
Limit

Gps-Projection flp 31737467 79498 71185 68 336 280 MHz 16

Gps-Projection fxp 27412500 19280 18831 8 96 251 MHz 68

Viterbi 765 6285 5470 8 0 339 MHz 210

Trellis 2153816 19739 12341 278 33 196 MHz 7

Interpolate 71802 20301 16791 8 20 278 MHz 65

Top-level 3600064 77836 44432 334 217 147 MHz 6

Table 13 – Synthesis results of sub-kernels including the theoretical limit for parallelization
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ITEM DESCRIPTION

Method Evaluation of computational performance and energy cost

Priority Must Have

Baseline CPU based sequential execution of 20M FCD points

KPI Speedup w.r.t. purely CPU based, % energy saving using FPGA acceleration

Notes Performance evaluation compared to 16-core CPU processor baseline

How To Measure
Software timers, HDL clock frequency and number of cycles, FPGA power
monitor

Involved Everest
Components

Map-match module, bambu, olympus, dfg-mlir

Target Value 5× performance improvement and/or -50% power consumption

Reached Value
performance > 6×, energy -80%. The measurements have been taken on an
AMD EPYC 7282 CPU, 64 GB RAM.

Description

EVEREST compilation flow provides user with the possibility to configure and generate various architec-
ture targets. The different targets under exploration have been presented in the previous method, and in the
following we will provide their performance figures. For components offloaded to FPGA we played with the par-
allelization factor, potentially up to the limits of the Alveo u280 Xilinx FPGA card. For the more fair evaluation
of our optimization we measured the baseline performance on the state-of-the-art CPU architecture: 16-core
AMD EPYC 7282 CPU, 64 GB RAM, CentOS 7.9.

Intermediate Steps

• Measure performance on a selected performant CPU-based system for processing of 1000 vectors (time
duration and power consumption)

• Measure performance for the same testbench using FPGA acceleration (time duration and power con-
sumption)

Results

Referring to Table 14, the following conclusions can be drawn:

• Baseline non-FPGA computation on Intel-based 4-core architecture (for details see Deliverable D6.3
Section 3.4.2) takes approximately 12 hours for 1 million vectors, which is a typical usecase for middle-
size city. Scaling it to 1,000 vectors the duration is approximately 44 seconds.

• Over the course of the project we transformed the initial baseline into memory optimized alternative,
where memory is split into 5×5 grid to allow for faster memory operations. This transformation is also the
enabler for better employment of parallelisation techniques with EVEREST. The transformation improves
the performance from 44s to 19s (the factor 2.3×).

• For the more fair comparison of our optimization we finally used state-of-the-art CPU for our baseline:
16-core AMD EPYC 7282 CPU, 64 GB RAM. This resulted in yet another increase of the performance of
our baseline from 19s to 9.6s (the factor 2×).

• The initial performance target of speedup 5× has been achieved with several architecture configurations
all revolving around offloading GPS-projection to FPGA with a parallelization option. Already 4 parallel
instances provided us with speedup of 5×, while higher degree of parallelization increased speedup
negligibly. Yet we finally achieved the speedup of 6.4×.

• Offloading other kernels like Viterbi showed no gains so they have been retained in the CPU space.
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• Energy-wise the FPGA implementation proves to be greatly more efficient than its CPU counterpart. With
offloading just the GPS-projection kernel we achieved the power reduction -80%.

• Note that the performance speedup has been referred to the optimized baseline (i.e. factor >6×). If we
were to compare against the initial baseline, the speedup factor would be 30×. Nevertheless, with all the
techniques combined we reduced the map-matching computation for 1 million vectors from 12 hours to
25 minutes, which has been SYG product goal to be able to process all data overnight.

Table 14 – Performance evaluation of MMA kernel acceleration variants. The CPU measurements have been taken on an AMD EPYC 7282 CPU.

Acceleration case Parallelization
Performance

1k vectors

Energy
(average
power)

speedup

Baseline 4core - 44s - baseline

Baseline 4core -memopt - 19s - baseline

Baseline 16core -memopt - 9.6s 1150 J baseline

Dfg-mlir optim - 6.1s 734 J 1.6×

Parallel Gps-projection 4x CPU 3.7s 444 J 2.6×

Offloaded Gps-projection 1x FPGA 2.8s 396 J 3.4×

Offloaded Gps-projection 4x FPGA 1.8s 262 J 5.3×

Offloaded Gps-projection 8x FPGA 1.75s 254 J 5.5×

Offloaded Gps-projection
2xCPU + 8x

FPGA
1.5s 219 J 6.4×

Offloaded Viterbi 1x FPGA 9.9s 1408 J 1.0×

2.3.5 O3.5 - Improve the overall performance of theprobabilistic time-dependent

routing kernel

The goal of this objective was to accelerate the PTDR Monte Carlo simulation kernel, with the goal of alleviating
the computational bottleneck that it has been previously causing in the traffic simulator.

This objective has been divided into two steps, port the kernel to an FPGA device, and then optimize it and
measure if the accelerated kernel can provide speed-up.

ITEM DESCRIPTION

Method
Acceleration of PTDR kernel Including Montecarlo Sampling for time to
destination estimation

Priority Must Have

Baseline PTDR Montecarlo on CPU (C++)

KPI Availability of FPGA accelerated kernel

Notes N/A

How To Measure
Evaluate that the PTDR kernel can run on an FPGA within an end-to-end
traffic simulator workflow

Involved Everest
Components

bambu, olympus, mARGOt, Virtualization extension

Target Value PTDR FPGA kernel is available

Reached Value PTDR FPGA kernel is available and integrated with the EVEREST run-time
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Description

The Monte Carlo kernel was written using a simplified variant of C++, leveraging the ETL library. It is
possible to generate an FPGA bitstream from it using the olympus and bambu tools. The kernel can be found
in the ptdr-monte-carlo-kernel5 repository. The kernel has also been integrated with the EVEREST run-
time environment, including evkit, mARGOt, the virtualization extension, and it can be used in an end-to-end
execution of the traffic simulator.

Intermediate Steps

1. Prepare simplified PTDR kernel written in C++, leveraging ETL.

2. Synthesize kernel with bambu.

3. Integrate onto Alveo u55c on IBM cluster using olympus and generate host driver API.

4. Integrate the PTDR kernel into evkit.

Results

• The Monte Carlo kernel has been ported to an FPGA bitstream with the bambu and olympus tools.

• The kernel has also been integrated with evkit, and can be used in an end-to-end execution of the traffic
simulator.

ITEM DESCRIPTION

Method Evaluation of computational performance and energy cost

Priority Must Have

Baseline CPU-based sequential PTDR execution of several thousand requests

KPI Speedup w.r.t. CPU based, % energy saving using FPGA acceleration

Notes N/A

How To Measure Software timers, FPGA power monitors.

Involved Everest
Components

bambu, olympus

Target Value 3× performance improvement and -30% energy consumption

Reached Value

Performance on FPGA is orders of magnitude slower than on CPU, FPGA
energy consumption has not been measured, therefore there is no
comparison with the CPU energy consumption. The CPU profiling measures
have been taken on an AMD EPYC 7643 CPU.

Description

To evaluate the performance of the PTDR Monte Carlo kernel on FPGA devices, we have used the same
route dataset that was used in the "Evaluation of the performance for traffic simulation test case" task described
in Table 2.3.1, however this time we have used only 500 input routes (a ∼20× smaller input), otherwise the
benchmark would take an unnecessarily long time.

In this case, the experiment was performed on the IBM cluster, which contains two bus-attached FPGA
devices on each node. We have compared the performance of the PTDR kernel running on an FPGA with the
kernel running on a single CPU core. The results of this experiment can be seen in Figure 13. The horizontal
axis shows the amount of used workers (in this case, a single worker represents a single FPGA device or a
single CPU core).

5https://code.it4i.cz/everest/ptdr-monte-carlo-kernel/-/blob/main/include/ptdr/profiler/profiler.hpp
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Figure 13 – PTDR kernel: evkit workers on FPGA vs CPU

We have also evaluated the energy (Watt) consumption of the traffic simulator and the PTDR kernel when
the kernel runs on the CPU. We have performed this measurement on the IBM cluster, which has two sockets,
each with an AMD EPYC 7643 CPU. The energy consumption was measured through the RAPL interface
provided by the amd_energy Linux kernel module.

The following measurement methodology was used to gather the results. First, we have measured the
steady-state energy consumption of the system, without any computationally demanding tasks being executed
in the background. This value was determined to be approximately 157 Watts at the time of the measurement
(note that this is a combined value that sums the consumption of both sockets on a single node of the cluster).
Then we have executed the traffic simulator with the PTDR kernel running on a single CPU core for one minute,
and measured the difference in energy consumption.

Intermediate Steps

1. Execute sequential CPU version of the PTDR kernel on the IBM cluster

2. Measure the time of the PTDR kernel running on the CPU

3. Optimize bambu synthesis of the kernel

4. Apply system-level optimizations via olympus

5. Measure the time of the PTDR kernel running on the FPGA

Results

• evkit is able to scale computation across multiple FPGAs, as can be seen in Figure 13.

• The absolute performance of the kernel running on an FPGA device is orders of magnitude slower than
the CPU version. The kernel can be replicated multiple times on the FPGA to increase the degree of par-
allelism, but the number of available memory channels towards HBM is always going to be a bottleneck.
Thus, despite a huge parallelization opportunity, the HBM channels limit the number of accelerators that
can be instantiated on the FPGA.

• We have measured the energy consumption of the traffic simulator with the PTDR kernel on a single
CPU core to be approximately 6 Watts. As we do not have a baseline for the energy consumption of
the bus-attached FPGA device, we cannot compare this result with the energy consumption of an FPGA
accelerator.
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3 User Story: Traffic Prediction using the EVEREST SDK

One of the key goals of the EVEREST SDK is to enable application developers to deploy their applications
on heterogeneous infrastructure in general and in particular on FPGA-accelerated hardware. Although the
benefits of such a deployment (e.g., improved latency performance or throughput, improved energy efficiency)
are widely accepted, very few developers have the ability to optimize applications for deployment on FPGA-
accelerated infrastructure and they also lack knowledge about the additional skills required to assist them. The
user story illustrates how the EVEREST SDK addresses this issue by first defining the tasks and skills of the
personas involved in the development and deployment process, then describing their task/problem and how
they address it using the EVEREST SDK, and finally showing the benefits for each persona.

It describes a desired feature or functionality and answers three key questions:

• Who: Who is the user trying to achieve something? (e.g., a network administrator, a mobile app user)

• What: What specific task or problem does the user want to solve through this optimization? (e.g., reduce
app loading times, and improve traffic prediction accuracy)

• Why: What benefit will the user gain from this optimization? (e.g., enhance user experience, optimize
resource allocation)

The user story serves to illustrate that:

• the EVEREST SDK enables a new class of users to optimize their applications on heterogeneous, FPGA-
accelerated infrastructure and substantially reduces development time

• based on the traffic prediction example below, potential users can map their own applications to personas
and tasks and determine the potential benefits of using the EVEREST SDK

• the gaps identified in new users’ stories will guide the evolution of the EVEREST SDK

For the example user story, we use the optimization and acceleration of the traffic prediction application
described in Deliverable D6.3. The full user story can be replayed from a Jupyter notebook, e.g. the traf-
fic prediction example notebook in the EVEREST SDK repository https://github.com/everest-h2020/everest-
sdk/blob/main/examples/applications/traffic_prediction/01_traffic_prediction_full_flow.ipynb, which is sketeched
in Figure 14. However, EVEREST technology is adaptable and can support various types of applications, not
just those related to traffic prediction, and the user story can be contextualized within a different application
environment.

The user story involves the following personas:

• ML-Developer (little knowledge of FPGA-acceleration)

• Workflow Specialist (app deployment and integration)

• Performance Engineer (fixing problems and adding features to the SDK, remote)

• Infrastructure Specialist (manages heterogeneous, FPGA-accelerated platform)

ML-developer. Skills: python / pytorch / tensor-flow; app development; HW-awareness.

(S)he gets the job to develop an app that uses an AI-model to predict future congestion on each road
segment of a city. (S)he trains a small model for each individual road segment. For a mid-size European city,
this leads to few 10000 models which all have the same architecture but different weights. (S)he integrates all
models into an app, which predicts congestion in the near future (up to 1hr ahead) for all road segments of
the respective city. After delivering the app to the workflow specialist, (s)he receives a note telling her/him that
her/his app is several orders of magnitude too slow (by the time the app returns a result, the prediction is no
longer valid).
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Figure 14 – User Story of the EVEREST SDK

(S)he finds that re-loading the model 10,000s of times destroys performance and also learns from the
workflow specialist that their infrastructure offers FPGA devices for acceleration. (S)he changes the application
by exploiting the fact that the model architecture remains unchanged and annotates some performance-critical
components in the code. The next step is to use the FPGA-aware compilation flow to produce an accelerated
version of her/his app. (S)he downloads the EVEREST SDK and uses it to compile her/his annotated code for
FPGA-accelerated heterogeneous infrastructure. The basecamp facade compiler (https://github.com/everest-
h2020/everest-basecamp) removes the barriers usually preventing the use of FPGA-accelerated infrastructure
by providing a simple CLI to get started:

1 ebc -cli ml_inference onnx --json -constraints <path -to-json -constraints > <path -to -model.onnx > <
path -to-output -directory >

Listing 1 – Example to compile and generate HLS/HDL files for a ML model represented in ONNX.

ebc-cli stands for EVEREST Base Camp command line interface, wich is the common command line inter-
face designed for integrating the tools of the EVEREST SDK. More details are explained with: ebc-cli –help.
(S)he runs into some issues and involves a performance engineer with FPGA expertise to address them. Com-
munication with the performance engineer is simple because they both work on a common Jupyter notebook.
The result is an optimised version of the app.

The ML-developer now includes the build-flow in her/his standard CI-CD pipelines and adjusts a few pa-
rameters of the app to meet the updated specs (s)he receives from the workflow specialist. The automation
allows her/him to make those adjustments without involving the performance specialist. After verification, (s)he
hands off the new version to the workflow specialists who can now meet performance targets.

Workflow specialist (app deployment and integration). Skills: understands end-user-application perfor-
mance targets; masters the workflow tools incl. deployment and profiling; infrastructure aware.

(S)he gets the job to deploy an application that identifies the shortest possible path through a large network
of roads for 10’000s of requests. Sets up the workflow including an app that runs inference on an AI-model,
which he gets from the ML developer. Sets up the end-to-end workflow and realizes that the inference task is
orders of magnitude too slow for her/his requirements.

(S)he meets with the ML-developer and finds that the FPGAs available in her/his infrastructure portfolio
might be able to provide substantial speed-up for the slow ML-inference app in his/her workflow. After some
time, (s)he receives a FPGA-accelerated version of the app from the ML-developer, downloads the EVEREST
SDK and uses the runtime components to re-deploy the FPGA-accelerated app on the target infrastructure.
While the app runs out-of-the-box on the FPGA-accelerated infrastructure, some additional optimizations might
be needed to optimize the performance of the data-exchange between the various components. This requires
some adjustments in collaboration with the infrastructure specialist, (s)he finally meets performance targets.

Performance engineer Skills: detailed knowledge of EVEREST SDK components involved in compiling to
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FPGA accelerated heterogeneous infrastructure; detailed knowledge of heterogeneous FPGA-CPU platforms

(S)he understands the details of the EVEREST SDK components required to compile ML applications to
FPGA-accelerated heterogeneous infrastructure. Analyses the requirements of the ML developer. Based on
this analysis, adjusts and optimizes the necessary configuration for the compilation tool-chain. For example,
as shown in Listing 2, the performance engineer decides that a higher pipeline depth inside the communication
layer of the FPGA would increase overall throughput and hence increases the comm_message_interleaving
and maximum_pipeline_store_per_node parameters. The first parameter increases also the parallelism be-
tween computation and communication inside of the FPGA at the expense of latency. Another parameter that
could increase the performance is the flag to allow multiple CPU clients as receiver of the results from the
FPGA(s), to avoid a bottleneck in the network-stack of the CPU. Finally, the performance engineer can also
tune the utilization goals of each FPGA to trade-off the difficulty of the FPGA place-and-route vs. the commu-
nication overhead between many FPGAs. Therefore, the performance engineer could allow DOSA to violate
the utilization limit slightly, if this could reduce the required FPGA nodes, as shown in the lower half of Listing 2.

1 "build" : {
2 "comm_message_interleaving": 8,
3 "maximum_pipeline_store_per_node": 16,
4 "insert_debug_cores": false ,
5 "allow_multiple_cpu_clients": true
6 },
7 "utilization": {
8 "max_utilization_fpgas": 0.90,
9 "utilization_exception": 0.05

10 },

Listing 2 – Updated DOSA config file to meet performance goals

Infrastructure specialist. Skills: understands heterogeneous (cloud) infrastructure in general and the
EVEREST target platform in particular; knows the runtime components of the EVEREST SDK needed to
deploy in an efficient way applications on FPGA-accelerated heterogeneous infrastructure.

(S)he gets a request from the workflow specialist and supports her/him in the debugging and optimization
of an ML-inference app on the target infrastructure of the EVEREST SDK.

1 ebc -cli airflow create <workflow -name >

Listing 3 – Creation of a workflow using airflow with basecamp

This command creates a new airflow-based workflow, which is needed to execute the code through the target
LEXIS platform with an off-load to IBMs FPGA-accelerated deployment. A number of optimizations are applied
by modifying the initial workflow for maximum throughput and minimal latency of the data-transfers involved in
the execution. In addition to that, the infrastructure specialist can exploit the EVEREST run-time to maximize
the resource.
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4 Highlights of Project Results and KPIs (on Use Cases)

This section aims to provide a comprehensive overview of the project’s key highlights and achievements, in
line with the project-level Key Performance Indicators (KPIs) defined in the project proposal. Each highlight
encapsulates the project’s significant outcomes, advancements, and overall progress. For a more thorough
understanding of the methodologies employed and the results obtained, we have provided direct and conve-
nient links to other project documents (deliverables) instead of duplicating the analysis. In addition to that, we
revised a bit the order of the sub-challenges to make the story within the section easier to follow.

Challenge 1 - To foster the adoption of heterogeneous architectures within the community, by improving the
quality of the results, while reducing the time-to-market, development cost, and programming effort.

• CH1.1 - Reduce by 50% the development costs of building demonstrators by using the EVEREST design
environment and alternative variants of the target system architecture.

The EVEREST project contributed in several ways to reduce the development cost of application demon-
strators. As an example for the case of map-matching, the EVEREST SDK, and in particular the dfg-mlir
dialect, bambu, and olympus provide developers with the necessary means to rapidly prototype and de-
velop heterogeneous applications by allowing them to move kernels between hardware and software
with a handful of simple annotations. Manual approaches require lots of glue code to be written which is
tedious and error-prone. The utilization of high-level automatic transformations, high-level synthesis, and
an MLIR-based toolchain for heterogeneous systems permits the straightforward evaluation of alternative
designs, which would otherwise be cumbersome or impossible to assess. Similarly, this applies to other
analyzed cases.

Quantitative numbers are hard to extract. However, during the execution of the project, experienced
hardware designers implemented kernels by hand that were later generated automatically with the help
of DSLs and the EVEREST MLIR-based compilation toolchain (see Deliverable D4.5). In the case of
WRF, manual designs for the radiation module took about 3 weeks, with 1 extra week of integration for
testing. With the automated flow, these kernels can be lowered in a matter of hours. In addition to com-
pilation/synthesis support, also the run-time part of EVERST (including Virtualization, application tuning,
and distributed multi-node run-time management) reduced the cost for building working demonstrators
and also a more efficient deployment: 1) it is possible to overcommit FPGA resources, thus enabling par-
allel prototyping of different applications, 2) virtual machine deployment is faster and easier to maintain
and reproduce and 3) application developers don’t need to buy the hardware anymore, they could rent
part of an FPGA-virtualization enabled infrastructure from a cloud provider.

• CH1.3 - Reduce programming efforts by one order of magnitude.

Domain-specific languages (DSLs) have emerged as a powerful tool in software development, offering
a targeted approach to solving complex problems within specific domains. One of the key advantages
of using DSLs is the significant reduction in programming effort they afford. By designing languages
tailored to specific domains, developers can express concepts and tasks in a more natural and intuitive
manner, abstracting away low-level implementation details. This results in increased productivity, as de-
velopers are able to focus more on domain-specific challenges rather than dealing with the intricacies
of a general-purpose programming language. Furthermore, domain-specific languages (DSLs) facilitate
code reusability and maintainability, as domain experts can easily understand and modify DSL-based
code, thus accelerating development cycles and enhancing overall software quality. In particular, within
EVEREST, DSLs are known to be much more concise than implementations using mainstream program-
ming languages like C/C++, Fortran or Rust. At the same time, DSLs can be leveraged to more easily
explore different variants (at compile-time or at runtime), as done within EVEREST where the DSLs are
used as the front-end of a more complicated toolchain composed of different optimization modules. This
was demonstrated earlier in the project in Deliverable D4.2 where from a simple specification (Figure 2
in Deliverable D4.2) multiple variants were created with almost zero effort.

To provide a more precise example on the EVEREST Use Cases, when dealing with WRF, our numpy-like
EKL DSL (see Deliverable D4.5) uses 100 lines of code that replace the implementation of the kernels
in the RRTMG module which uses more than 2,000 lines of legacy Fortran. This example should also
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consider that the use of the automatic generation of offloading and linking removes lots of boilerplate
code. Moreover, what is still hidden is that the EVEREST SDK automatically generates lot of synthesis
and integration scripts which otherwise require human intervention. For example, Bambu automatically
generates hundreds of Tcl code lines to control the simulation and synthesis backend scripts. Moreover,
the automatic generation is done in a flexible way since the synthesis scripts depend on the type of FPGA
technology used, so they require a deep understanding of the RTL synthesis backend used. Similar
happens to dosa which enhances the developer productivity significantly by allowing to compile a ONNX
model to (multiple) FPGAs with just one command, without requiring the user to have detailed FPGA
knowledge (see Deliverable D4.5). Hence, using dosa, what was previously the work of multiple days, if
not weeks, is now possible within hours with almost no interactions;

• CH1.2 - Reduce by 50% the time to identify anomalies.

The EVEREST SDK allows developers to deploy anomaly detection modules at any point throughout their
workflow with minimal effort. Anomaly detection can serve as input sanitization to protect the models
or to detect other security events. Within the project a library called ADLib has been developed (see
Deliverable 3.2). Furthermore, it has been integrated within the use cases. Within the traffic use case,
integration had to be done at a lower level, meaning ADLib was not used as a stand-alone library but as
a function within their existing codebase. This use case was chosen as a target to accelerate the internal
anomaly detection model. Concretely, the software implementation of the function which represented the
largest part of execution time (> 99%) has been accelerated onto an FPGA using dosa. This resulted in
a drastic improvement in execution time from a range of 1.2k - 45k microseconds in software depending
on the input data, to a worst-case execution time of 1.318 microseconds on an FPGA. In addition to that,
as shown in the related table of Section 2 of this document, all the injected anomalies within a dataset
from DUF have been identified, demonstrating a great improved capability of the developed methods.
The target value of 50% can be considered as met.

Challenge 2 - To enable the acceleration of computation and data accesses on heterogeneous distributed
architectures.

• CH2.2 - Improve by 2x the execution performance.

As an activity within the project, but also part of our assessment procedure of the project KPIs within
the project, we have developed the use case demonstrators tailored to different target fields utilizing
the EVEREST design environment. These demonstrators served as driver for requirements but also as
practical implementations showcasing the capabilities and functionalities of our project.

During the evaluation phase, we identified a heterogeneous behavior in terms of the advantages (and
disadvantages) of using the EVEREST SDK (and an FPGA acceleration). These differences originate
from different sources, the complexity of the analyzed kernels, the maturity of the tools involved, and also
when the final kernel has been made available for optimization within the project timeframe.

Regarding the WRF-based use cases, we already explained in other deliverables (i.e. Deliverable D6.3
and Deliverable D4.5) that we focused on the most computationally intensive part, namely, the radiation
module. As explained in Deliverable D4.5. The computational cost of the taumol_sw function was reduced
by 3× by adopting the EVEREST SDK. Similar but even better, has been the adoption of the EVEREST
SDK to support the the Map-Matching application within the traffic modelling use case. This was also
due to the application type (more dataflow oriented) that offered multiple kernels to offload on the FPGA
(see Deliverable D6.3 for more details). Offloading it to hardware and replicating it has yielded speedups
of more than 6× against an optimized version (while more than 30×, with respect to the version originally
available at the beginning of the project). Details on the Map Matching optimizations and results can
be found within Section 2.3.4 of this document (Objective 3.4 - Improve the overall performance of map
matching kernel). In the case of Traffic prediction, the ML inference deployed on the IBM cloudFPGA
platform results in a user-side end-to-end speed-up of 24× for the prediction of a road segment using 8x
kernel parallelisation option, which is compared to a CPU-only solution. The results are reported within
Section 2.3.2 of this document (Objective 3.2 - Improve the overall performance of neural network traffic
prediction).
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• CH2.1 - Reduce by 30% the energy cost.

In comparison to traditional CPUs, FPGAs have consistently been identified as devices offering significant
advantages in terms of energy efficiency. This is due to the fact that FPGAs, and in particular the logic
designed on them, are tailored to perform specific tasks with respect to the more general-purpose CPUs.
Consequently, they represent an attractive choice for applications where energy efficiency is important.
However, this is not always true since the data transfer cost and the use of larger devices can in same
case erode this gain. In EVEREST, we had the opportunity to measure the energy consumption for two
modules of the traffic use case on different platforms (cloudFPGA and Alveo-based).

For the Traffic prediction, the ML inference deployed on the IBM cloud-FPGA platform with the maximum
parallel configuration option, achieving 24x speedup compared to the CPU only solution, uses approx-
imately 5x less energy (-79%) than the CPU counterpart 6. For more details see Objective 3.2 within
Section 2.3.2 of this document.

In the case of Map-matching for the sweat spot architectural configuration using the bus-attached FPGA
option (Alveo-based), which yielded 6× speedup compared to 16-core CPU architecture 7, we similarly
obtained 5× less energy consumption (-80%) with respect to the CPU execution. Details can be found in
Section 2.3.4 of this document.

Challenge 3 - To significantly improve the results of the target UCs renewable energies production predic-
tion, air-quality monitoring, traffic modeling, and prediction.

• CH3.1 – Improve by 10x the performance of simulations for renewable energies prediction.

The primary objective of the energy prediction use case was to facilitate the internal deployment of a DUF
application, thereby eliminating the need to rely on external providers. This goal has been fully achieved
since the entire end-to-end pipeline, including data collection, WRF execution, data post-processing
(with anomaly detection) and ML power prediction, has been deployed and was operational during the
final period of the project (and tested on a large set of historical data). In particular, the ML engine
developed within EVEREST and the pre- and post-processing methods demonstrated a performance
that was very close to that of the best provider on the market (see Section 2.1 of this document). The
scenario of one WRF forecast per day for the 24 hours of the day ahead proved to be sufficient to make
the next day’s forecasts suitable for sale in the day-ahead market. Therefore, it was not necessary to
accelerate WRF. However, more frequent forecasts were expected to reach the intra-day market and/or
to adopt predictions based on ensemble data. Within the entire energy prediction workflow the part
most computationally intensive part is without any doubt the data generation using WRF. The lack of
acceleration within a production environment for the end-to-end WRF workflow reduced the expected
huge impact of this activity.

• CH3.2 - Improve by 2x the response time of the air-quality predictions.

Despite the final demonstration of EVEREST development (new WRF-IFS workflow and new air-quality
ML approach) was not performed on final outputs (air pollution events) due to the limited time, an actual
improvement in the forecast of main weather parameters (wind and temperature) are observed. Globally,
an improvement of around 50% have been obtained in terms of the major quantities to be monitored
for detecting pollution events, as shown in Section 2.2.3 of this document, mainly due to the new ML
approach. Unfortunately, within the project time frame, the project was not able to finalize the end-to-end
accelerated Workflow related to WRF. The estimations done on the WRF kernels provide hints on the
possibility to further accelerate the execution by a global end-to-end speedup of 10%. However, due
to this good performance, NUM started to test the ML approach for some specific clients outside the
EVEREST project, and as indicated in Deliverable D7.7, its exploitation is clearly planned by NUM.

• CH3.3 - Improve by 3x the overall performance of traffic model framework.

The traffic simulator model framework has greatly benefited from various improvements across its mod-
ules (e.g. ML Traffic Prediction, Map Matching). On the side of the traffic simulator itself, the integration

6The CPU profiling measures have been taken on an AMD EPYC 7643 CPU.
7The CPU profiling measures have been taken on an AMD EPYC 7282 CPU
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of evkit enabled not only the parallelisation of parts of the code as also supported the distribution of
the computation across the multiple nodes of HPC clusters. These improvements enabled for instance
a faster and more distributed computation of alternative routes, the implementation of an approach for
accessing map updates in a distributed manner or the offloading of parts of the computation to FPGA.
These improvements allowed the traffic simulator to support simulations with at least 250,000 vehicles,
compared to the previous 50,000, and the project results indicate that the simulator supports simulations
with even more vehicles. At the same time, the results have indicated a speed-up of more than 100 times
compared to the baseline version. Additionally, the usability of the simulator has also been improved as
it now supports deployment within the LEXIS platform, providing an additional deployment option for its
users.
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5 Conclusion

In the final phase of the project specific efforts were dedicated for planning, execution, and evaluation of the
impact of our efforts across the three distinct use cases. In summary, this document provides a comprehensive
overview of the project’s significant achievements in relation to the requirement of the use cases and in terms
of project’s Key Performance Indicators (KPIs). Particular attention has been considered to the main project
claims which were on the reduction of development costs and programming efforts, improved performance,
and energy efficiency through the use FPGAs and by exploiting the EVEREST design environment. The use
case evaluations were conducted considering both functional and extra-functional results. Additionally, a user
story detailing the seamless usage of our EVEREST System Development Kit (SDK) for the traffic prediction
module has been included, focusing the attention on the involved entities.

Within the document, we tried to underline the key advancements and challenges that could also be found
within the requirements of the application providers: (i) Enhanced adoption of heterogeneous architectures
by reducing development costs, programming efforts, and anomaly identification time; (ii) Accelerated com-
putation and data access on heterogeneous distributed architectures, resulting in improved execution perfor-
mance and reduced energy costs; (iii) Significant improvements in renewable energy prediction simulations,
air-quality predictions, and traffic model framework performance. With this perspective, we can mention that
several lessons were learned while making the wrap-up of the document. The results reached by the project
were heterogeneous, with several successes, but also some failures. The latter have been determined by
the computation patterns adopted by the target kernels, such as PTDR, or by the large complexity of the tar-
get modules, like WRF-RRTMG, that did not limit the required effort to the project claimed contribution. The
achievements are nicely reported in the previous section linked to the target project KPIs.

In addition to that, before closing the document, we can describe our conclusions on the use of the EVER-
EST SDK to the target UCs. Within the project, it became evident that increasing design complexity necessi-
tates the adoption of high-level synthesis (HLS) to enhance productivity. Utilizing HLS for generating both ac-
celerator kernels and the associated system architecture allows for targeting various platforms more effectively.
The use of various types of DSL could even increase the abstraction. However, it was also clear that accelera-
tion could only be applied to selected portions of applications, necessitating complex and time-consuming code
rewriting. For what we experienced, a solution to the old problem of HW/SW partition requiring to have a good
understanding of the code functionality is still necessary, since it impacts a lot the resulting performances. Fur-
thermore, hardware generation was sometimes limited by FPGA resources, particularly memory blocks, and
custom data formats required careful accuracy analysis at the application level. The project also highlighted
the significant challenges involved in porting large and legacy codebases (WRF) to FPGA-compatible formats.
However, this large effort that impacted also for a long interval of time within the project, limited then the opti-
mization possibilities. On a positive note, the modularity and interoperability of the SDK were significant added
values, enabling the integration of different dialects, tools, and platforms, which greatly enhanced the flexibility
and utility of the EVEREST SDK.

To conclude, we think that, in addition to the results and achievements we had within the project, we gained
lot of knowledge and insights that could provide a foundation for future improvements and applications in FPGA
support tools.
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