
http://www.everest-h2020.eu

dEsign enVironmEnt foR Extreme-Scale big data
analyTics on heterogeneous platforms

D4.5 — Final report of the compilation
framework

The EVEREST project has received funding from the European Union’s
Horizon 2020 Research & Innovation programme under grant agreement
No 957269



http://www.everest-h2020.eu

Project Summary Information

Project Title dEsign enVironmEnt foR Extreme-Scale big data analyTics on heterogeneous
platforms

Project Acronym EVEREST

Project No. 957269

Start Date 01/10/2020

Project Duration 42 months

Project Website http://www.everest-h2020.eu

Copyright
© Copyright by the EVEREST consortium, 2020.

This document contains material that is copyright of EVEREST consortium members and the Euro-
pean Commission, and may not be reproduced or copied without permission.

Num. Partner Name Short Name Country
1 (Coord.) IBM RESEARCH GMBH IBM CH

2 POLITECNICO DI MILANO PDM IT

3 UNIVERSITÀ DELLA SVIZZERA ITALIANA USI CH

4 TECHNISCHE UNIVERSITAET DRESDEN TUD DE

5 Centro Internazionale in Monitoraggio Ambientale -
Fondazione CIMA CIMA IT

6 IT4Innovations, VSB Technical University of Ostrava IT4I CZ

7 VIRTUAL OPEN SYSTEMS SAS VOS FR

8 DUFERCO ENERGIA SPA DUF IT

9 NUMTECH NUM FR

10 SYGIC AS SYG SK

Project Coordinator: Christoph Hagleitner - IBM Research - Zurich Research Laboratory

Scientific Coordinator: Christian Pilato - Politecnico di Milano

The technology disclosed herein may be protected by one or more patents, copyrights, trademarks
and/or trade secrets owned by or licensed to EVEREST partners. The partners reserve all rights with
respect to such technology and related materials. Any use of the protected technology and related
material beyond the terms of the License without the prior written consent of EVEREST is prohibited.

Disclaimer
The content of the publication herein is the sole responsibility of the publishers and it does not nec-
essarily represent the views expressed by the European Commission or its services. Except as
otherwise expressly provided, the information in this document is provided by EVEREST members
"as is" without warranty of any kind, expressed, implied or statutory, including but not limited to any
implied warranties of merchantability, fitness for a particular purpose and no infringement of third
partys rights. EVEREST shall not be liable for any direct, indirect, incidental, special or consequen-
tial damages of any kind or nature whatsoever (including, without limitation, any damages arising
from loss of use or lost business, revenue, profits, data or goodwill) arising in connection with any
infringement claims by third parties or the specification, whether in an action in contract, tort, strict
liability, negligence, or any other theory, even if advised of the possibility of such damages.

D4.5 - Final report of the compilation framework 2



http://www.everest-h2020.eu

Deliverable Information
Work-package WP4

Deliverable No. D4.5

Deliverable Title Final report of the compilation framework

Lead Beneficiary TUD

Type of Deliverable Report

Dissemination Level Public

Due Date 31/01/2024

Document Information
Delivery Date 24/06/2024

No. pages 55

Version | Status 0.7 | Final

Responsible Person Jeronimo Castrillon (TUD)

Authors

Jeronimo Castrillon (TUD), Karl A. F. Friebel (TUD), Felix Suchert (TUD), Burkhard
Ringlein (IBM), Serena Curzel (PDM), Michele Fiorito (PDM), Fabrizio Ferrandi
(PDM), Donatella Sciuto (PDM), Christian Pilato (PDM), Stephanie Soldavini
(PDM)

Internal Reviewer Francesco Regazzoni (USI)

The list of authors reflects the major contributors to the activity described in the document. All EVEREST
partners have agreed to the full publication of this document. The list of authors does not imply any claim of
ownership on the Intellectual Properties described in this document.

Revision History
Date Ver. Author(s) Summary of main changes
24.11.2023 0.1 Jeronimo Castrillon (TUD) Initial structure.

04.01.2024 0.2 Jeronimo Castrillon (TUD) Initial text, revisited structure and refined outline
of the chapters.

09.02.2024 0.3 Jeronimo Castrillon (TUD) Cleaned up remaining issues in Sections 1–6.
First draft of conclusions.

08.03.2024 0.4 Jeronimo Castrillon (TUD) Added tool links, requirement assessment and
comparison to the state of the art.

14.03.2024 0.5 Christian Pilato (PDM) Revision of hardware generation flow and
general clean up.

15.03.2024 0.6 Jeronimo Castrillon (TUD) Final clean up and approval.

24.06.2024 0.7 Jeronimo Castrillon (TUD) Addressed feedback from EC reviewers.

Quality Control

Approved by Internal Reviewer March 18, 2024

Approved by WP Leader March 15, 2024

Approved by Scientific Coordinator March 15, 2024

Approved by Project Coordinator March 18, 2024

D4.5 - Final report of the compilation framework 3



http://www.everest-h2020.eu

Table of Contents

1 Executive Summary 6
1.1 Structure of this Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Overview of the Compilation Framework 7

3 Language Support 11
3.1 EVEREST Kernel Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Fortran Integration for WRF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Dataflow: Ohua/Condrust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Intermediate Representations and Transformations 15
4.1 ekl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 esn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 dfg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.4 evp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.5 olympus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.6 Connecting to High-Level Synthesis (HLS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.7 Machine Learning Abstractions and Optimization . . . . . . . . . . . . . . . . . . . . . . . 22

4.7.1 Operation Set Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.7.2 DOSA: Distributed Operation Set Architectures using organic compiler principles 24

5 Hardware Generation Flow 26
5.1 Hardware-Oriented Optimizations and Kernel Generation . . . . . . . . . . . . . . . . . . 26

5.1.1 Loop Pipelining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.1.2 Custom Precision Floating-point Data Types . . . . . . . . . . . . . . . . . . . . . . 28

5.2 Partitioning to Distributed FPGAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.3 Memory-Related Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.4 System Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.4.1 Network-attached Field Programmable Gate Arrays (FPGAs) . . . . . . . . . . . 31
5.4.2 Bus-attached FPGAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6 Code Generation and Runtime Integration 36
6.1 Host Code Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.2 EVP: The Offloading Linker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.3 Bundling Variants with basecamp Climbs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7 Final Assessment 40
7.1 Requirements: Language and Compilers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7.1.1 REQ3.1 – WRF expression abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.1.2 REQ3.2 – WRF Fortran integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.1.3 REQ3.3 – ML integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.1.4 REQ3.4 – Streaming support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.1.5 REQ3.5 – Integration with compiler frameworks . . . . . . . . . . . . . . . . . . . . 41
7.1.6 REQ3.6 – Compiler transformations for kernels . . . . . . . . . . . . . . . . . . . . 41
7.1.7 REQ3.7 – Compiler transformations for dataflows . . . . . . . . . . . . . . . . . . . 41
7.1.8 REQ3.8 – Multi-target code generation . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.1.9 REQ3.9 – Generation of tunable parameters . . . . . . . . . . . . . . . . . . . . . . 42
7.1.10REQ3.10 – Interface to HLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.1.11REQ3.11 – cFDK/OC-Accel software integration and language compatibility . 42
7.1.12REQ3.12 – Reasoning about heterogeneous applications . . . . . . . . . . . . . . 42
7.1.13REQ3.13 – Glue code generation for heterogeneous applications . . . . . . . . 43
7.1.14REQ3.14 – Abstractions for offloaded kernels . . . . . . . . . . . . . . . . . . . . . . 43

D4.5 - Final report of the compilation framework 4



http://www.everest-h2020.eu

7.2 Requirements: HLS and Memory Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.2.1 REQ4.1 – C/C++ support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.2.2 REQ4.2 – Bambu LLVM IR support . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.2.3 REQ4.3 – Bambu MLIR dialect support . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.2.4 REQ4.4 – HLS Verilog output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.2.5 REQ4.5 – HLS VHDL output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.2.6 REQ4.6 – Top function specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.2.7 REQ4.7 – Block level/Top component interfaces . . . . . . . . . . . . . . . . . . . . 44
7.2.8 REQ4.8 – Port-Level interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.2.9 REQ4.9 – Bambu Vivado HLS I/O interface interoperability . . . . . . . . . . . . . 45
7.2.10REQ4.10 – Technology options specification . . . . . . . . . . . . . . . . . . . . . . 45
7.2.11REQ4.11 – Bambu Data flow annotations . . . . . . . . . . . . . . . . . . . . . . . 45
7.2.12REQ4.12 – Bambu OpenMP support . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.2.13REQ4.13 – Bambu floating point precision . . . . . . . . . . . . . . . . . . . . . . . 46
7.2.14REQ4.14 – cFDK/OC-Accel top component interface . . . . . . . . . . . . . . . . . 46
7.2.15REQ4.15 – Memory interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.2.16REQ4.16 – Software-level support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.2.17REQ4.17 – Hardware/software data sharing . . . . . . . . . . . . . . . . . . . . . . 46

7.3 Advancing the State-of-the-art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

8 Conclusions 49

References 52

D4.5 - Final report of the compilation framework 5



http://www.everest-h2020.eu

1 Executive Summary

The EVEREST project proposes a platform and System Development Kit (SDK) to deploy demanding work-
flows to suitable high-performance or edge hardware [25, 24]. This document provides a final report on the
compilation framework of the SDK. The compilation framework plays a key role in providing high-level program-
ming support for productivity together with a methodology for optimization. The latter includes software and
hardware transformations as well as autotuning support for runtime adaptivity.

In this document, we describe the technologies, tools, and components of the compilation framework and
assess how they contribute to fulfilling the EVEREST requirements described in Deliverable D2.2 and Deliver-
able D2.5. Details on how to use the tools are provided in Deliverable D4.6. The design presented here follows
the specification provided in Deliverable D4.1, which depicted a complex landscape of programming languages
(Fortran, Rust, C++, Python) and computational requirements (large workflows combining High-Performance
Computing (HPC), Big Data and machine learning). In this document we describe the language abstractions,
high-level representations and hardware-oriented transformations for computational motifs that are represen-
tative of those found in the use cases of the EVEREST project. We use examples to demonstrate the different
representations and transformations enabled in the EVEREST SDK. Use-case specific descriptions are a mat-
ter of Deliverable D6.3.

1.1 Structure of this Document

This document starts with an overview of the compilation framework in Section 2. The overview details the
evolution of the SDK, connecting to previous project deliverables, and describes basecamp, a unified tool that
provides access to the multiple tools within the SDK. Section 3 summarizes contributions to Domain-Specific
Languages (DSLs) and the integration into Fortran for HPC use cases. A major contribution of the SDK is a
collection of Intermediate Representations (IRs) that enable reuse across domains. These IRs, implemented
in Multi-Level Intermediate Representation (MLIR), are described in Section 4 along with sample transforma-
tions. Hardware programming and integration flows are described in Section 5. This includes extensions to
HLS flows and system-level integration support for the EVEREST platform. The presented flow is concluded
with Section 6, which describes how the components in this document integrate with the dynamic runtime en-
vironment. In Section 7, we provide a final assessment concerning the requirements in Deliverable D2.5 and
a high-level comparison with the state of the art. This deliverable finishes with conclusions in Section 8.

D4.5 - Final report of the compilation framework 6
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2 Overview of the Compilation Framework

Figure 1 – Overview of the compilation flow.

Previous reports detail the evolution of the compiler tooling developed within the EVEREST project. Most
notably, the evolution can be identified in Figure 1 of Deliverable D4.1, the examples of the Alpha Release in
Deliverable D4.3 and in Figure 1 of Deliverable D4.2, which is replicated in Figure 1 for better reference. This
figure reflects the heterogeneity of the requirements identified early in the project, with (i) different types of
workloads (dataflow/task graphs, HPC kernels and machine learning), (ii) different languages (Fortran, C/C++,
ONNX, Rust, Python and DSLs), (iii) rich interfaces (via intermediate code in LLVM or MLIR, via generated
C/C++ or Rust code and other metadata for variant generation), and (iv) the integration with multiple external
tools and frameworks (WRF build system, TVM, the MLIR infrastructure, Vivado/Vitis HLS tools.

Today, the complexity depicted in Figure 1 is shielded from developers by a simple tool interface that we
call basecamp. As shown in Figure 2, basecamp provides a common interface to pass applications to the
compilation flow (see format and example at the bottom). Basecamp also interfaces with the deployment flow
in EVEREST with leverages the LEXIS platform1, which has been extended to offload the execution of selected
kernels on FPGAs. It also contains interfaces to the runtime system (see Deliverable D5.5). In this way, if an
accelerated task requires more resources, the EVEREST runtime can adapt the computation accordingly.

Basecamp offers a command line interface (CLI) and a python Application Programming Interface (API),
whereas the former is a wrapper for the latter. The general CLI structure is shown at the bottom of Figure 2.
In the given example, the dataflow tools are invoked and the result is written to the build/ directory. In that
example, basecamp acts as a unified wrapper for the different optimization flows of the SDK. However, base-
camp can also bundle different optimized variants of one application, i.e., different outputs of basecamp flows,
together into one executable application, as described in Section 6. The complete CLI of basecamp is given in
Listing 1.

$ ebc -cli --help

EVEREST basecamp -- the basis for all EVEREST endeavors.

Usage:

ebc -cli dataflow <input -file > -o <path -to-output > --target <target > --threads <num > --enable -←↩
parallelism <bool > --c-limit <num > --amorphous <bool >

ebc -cli hpc [--lang <lang -id> --pipeline <pipeline > (-D <define >...) (-I <include >...)] <input←↩
> -o <path -to-output >

1https://lexis-project.eu/web/lexis-platform/

D4.5 - Final report of the compilation framework 7
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ebc -cli ml_inference onnx|torchscript (--json -constraints <path -to-json -constraints > | --app -←↩
name <app -name > --target -throughput <target -sps > --batch -size <batch -size > --←↩
used_bit_width <used -bit -width > --onnx -input -name <onnx -input -name > --onnx -input -shape <←↩
onnx -input -shape >) [--map -weights <path -to-weights -file >] <path -to-model.file > <path -to-←↩
output -directory > [--calibration -data <path -to-calibration -data >]

ebc -cli climbs (describe --flow <flow > | create --name <name > <path -to-file.climb > | ←↩
add_module --module <path -to-module.section > <path -to-file.climb > | add_file --file <path -←↩
to-source.file > --language <language > <path -to-file.climb > | emit <path -to-file.climb > [--←↩
output -directory <path -to-output -directory >])

ebc -cli airflow ( create | get_params | get_state | execute [--params -json -path <path -to-json -←↩
params >]) <workflow -name >

ebc -cli -h|--help

ebc -cli -v|--version

Commands:

dataflow Invoke the dataflow flow of the EVEREST SDK.

hpc Invoke the HPC flow of the EVEREST SDK.

ml_inference Invoke the ML inference flow of the EVEREST ←↩
SDK.

climbs Combine different flows (i.e., "everest ←↩
climbs ") to one application.

airflow Allows the execution of Airflow workflows ←↩
via Py4Lexis.

Options:

-h --help Show this screen.

-v --version Show version.

-o <path -to-output > Path to save generated files under (defaults←↩
to `generated `).

--target <target > Target for the code generator (supported ←↩
values: rust , mlir).

--threads <num > Number of threads to parallelize for (←↩
default: number of local cores).

--enable -parallelism <bool > Whether to enable the parallelization ←↩
optimization (defaults to `true `).

--c-limit <num > Number of maximum collisions for computation←↩
with amorphous data parallelism.

--amorphous <bool > Whether to enable the transformation of ←↩
amorphous data parallel tasks (defaults to `false `).

--json -constraints <path -to-json -constraints > Import the ML target constraints of the ←↩
given JSON file.

--app -name <app -name > The name of the target application (to ←↩
create human -readable labels).

--target -throughput <target -sps > The targeted throughput (in samples -per -←↩
second (sps) of the inference application.

--batch -size <batch -size > The used batch size per inference request (i←↩
.e. sample).

--used_bit_width <used -bit -width > The bit width for input , activations , and ←↩
weights.

--onnx -input -name <onnx -input -name > The name of the input node in the ONNX graph←↩
.

--onnx -input -shape <onnx -input -shape > The input shape in the ONNX graph.

--map -weights <path -to-weights -file > The file containing the weights for the ←↩
kernel -weight -mapping schema.

--calibration -data <path -to-calibration -data > Point to the .npy file containing example ←↩
data to calibrate transformation to quantized data types.

describe Describe the required API for the flow.

--flow <flow > Specifies the flow to describe.

create Create a new flow.

add_module --module Add a new application variant to an existing←↩
climb.

add_file --file Add a file (with annotations) of the main ←↩
application to the climb.

--language <language > The language of the added file. Currently ←↩
supported are: python , docker , copy. (Copy means the file will be copied without change .)

emit Emit created climb to build directory.

create Create a new Airflow workflow.

D4.5 - Final report of the compilation framework 8
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get_params Get the current parameters of a workflow.

get_state Request the current state of a workflow.

execute Trigger the execution of a workflow.

--params -json -path <path -to-json -params > Optional update of workflow parameters for ←↩
execution.

Copyright EVEREST Consortium , licensed under the Apache License 2.0.

For contact and more details , please visit: https :// everest -h2020.eu

Listing 1 – CLI of the everest basecamp tool. The cli is a wrapper of the python API, discussed in Section 6.

As will be described in this document, the compiler infrastructure for the different workloads, the integration,
and assembly, as well as the interfacing to HLS tools are handled, for the most, within a common framework im-
plemented in MLIR (see, for instance Figure 8). This effectively contributes to the unification of methods, which
was one of the original goals of the EVEREST SDK to enable the convergence of data-centric applications
involving HPC, Big Data, and machine learning.

basecamp

Deep Learning

General Tensor Kernels

Dataflow Pipelines

DOSA

EKL

Ohua

Integration & 
Assembly

EVP

Deployment

Synthesis

OlympusBambu

obj obj

bitstream

# Format: ebc-cli <flow-select> <flags> <inputs> <outputs>
> ebc-cli dataflow mma.mlir --target="mlir" -o "build/" ​

Figure 2 – Basecamp, an interface to interact with the compilation flows in the EVEREST SDK.

This deliverable describes the final design of the DSLs in Section 3. We describe the adaptations to
the Ohua DSL to cater for implicit dataflow applications, like the routing algorithm described in Deliverable
D2.1, with extensions to support hardware offloading; the basic Cfdlang DSL for tensor kernels in HPC, like
in Computational Fluid Dynamics (CFD) applications in Deliverable D2.1 and new abstractions to support the
expressions identified in the radiation module of WRF; and how we leverage the prominent TVM framework for
machine learning for decision-making in multiple use cases as described in Deliverable D2.1.

The MLIR-based intermediate languages to support the different workloads in the EVEREST project are
described in Section 4. This includes novel frontend dialects, intermediate dialects for generalized Einstein
notation, dataflow and system-level integration as well as for custom number representations. Section 4 also
describes transformations and lowering passes within the MLIR stack. This includes typical coarse-grained op-
timizations for dataflow, algebraic and polyhedral optimizations for mathematical kernels in HPC, and standard
optimizations for deep neural networks. Software-only versions can be produced after the optimization that
can run on standard CPU nodes. Multiple such versions can be passed to the mARGOt autotuner for further
optimization at runtime.

For nodes with reconfigurable hardware, the compiler middle-end can produce different interfaces and de-
scriptors for the hardware generation part (HW and HLS in Figure 1). From the Rust backend of the dataflow
language, LLVM IR can be generated for the Bambu HLS tool. For the HPC kernels, the compiler can interface
directly via MLIR or LLVM with Bambu, or generate C/C++ code with HLS pragmas for Vitis/Vivado or Bambu.
All this process is orchestrated and handled by EVP (see Figure 2). Machine learning applications are pro-
cessed within the DOSA framework. The DOSA framework intelligently selects the best implementation for the
operators used in the deep neural network. After this phase, multiple different Register Transfer Level (RTL)
implementations for standalone kernels, functions (nodes in the dataflow graph) or machine learning operators
are generated via HLS using either Bambu or Vivado/Vitis.
D4.5 - Final report of the compilation framework 9
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The final phase of the compilation framework (code-gen and system generation in Figure 1 is responsible
for creating the entire system on the FPGA(s), performing the HW-SW integration and finally generating the
binaries and bitstreams. This system-level generation is handled by Olympus (see Figure 2) as will be de-
scribed in Section 5. Olympus also performs several optimizations to effectively use the FPGA resources and
balance computation and communication time (especially relevant for systems with multiple memory chan-
nels). It also allows for the integration of kernels generated with different flows (e.g., different HLS tools or
manual RTL blocks), enhancing the interoperability of the whole SDK. If an application requires more than one
network-attached FPGA node, DOSA and the ZRLMPI tool handle the system generation. Here, the inter- and
intra-FPGA communication is derived and optimized, and the FPGA design is generated. Links to the main
tools of the compilation framework can be found in Table 1. For the final release, tool names and paths may
change.

Tool URL
DOSA https://github.com/cloudFPGA/DOSA

ub https://github.com/KFAFSP/ub-mlir

base2 https://github.com/KFAFSP/base2-mlir

cfdlang https://github.com/everest-h2020/messner

Ohua/Condrust https://github.com/ohua-lang/condrust

dfg-mlir https://github.com/Feliix42/dfg-mlir

Bambu https://github.com/ferrandi/PandA-bambu

Olympus https://github.com/StephanieSoldavini/olympus

basecamp https://github.com/everest-h2020/everest-basecamp

Table 1 – Links to main open source tools in the compilation flow
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3 Language Support

As specified in the project plan, Deliverable D4.1 and Deliverable D4.2, the EVEREST SDK provides support
for kernels in HPC, machine learning and dataflow computing. This section describes the final versions of the
languages, building on the preliminary versions described in Deliverable D4.2. This section also explains how
the languages integrate within the use cases.

3.1 EVEREST Kernel Language

In Deliverable D4.1, we chose the CFDlang language [36] as the starting point for the EVEREST HPC workflow.
This DSL was originally designed for CFD applications and later extended for cross-domain tensor expressions
in [42]. It was chosen for its modeling of regular linear algebra, providing the freedom needed to implement
data management techniques as described in Deliverable D3.1.

In Deliverable D4.2, we detailed how CFDlang and other DSLs can be integrated into an MLIR compiler
stack for rapid prototyping and language design. Moving to MLIR, the EVEREST HPC workflow became a
composition of a separate DSL front-end and a reusable domain- and target-specific middle-end. In addition,
we reported on extensions to the CFDlang language that we deemed necessary to support the computational
motifs identified within RRTMGP [27]. These included richer index expressions, but also user-level annotations
to specify non-functional requirements (e.g., quantization) for our pipeline to use.

As described in Deliverable D4.2, RRTMGP became our final target application for the EVEREST HPC
workflow. RRTMGP is a state-of-the-art implementation of the Correlated K-Distribution (CKD) algorithm to
solve the gas optics problem required to calculate atmospheric radiative transfer. Focusing on the short-wave
bands only, this means that EVEREST ultimately targets the 4 kernels of interpolation, minor- and major ab-
sorber contributions, and Rayleigh scattering. To implement them, we derived the EVEREST Kernel Language
(EKL) DSL from our earlier CFDlang prototype, with EKL now being our final version of the EVEREST DSL.

In terms of language and middle-end features, the above kernels demand support for in-place construction,
broadcasting, index re-association, and subscripted subscripts. Figure 3 shows an example of the mathe-
matical expression and the corresponding DSL snippet for the major absorbers kernel. The given expression
approximates how the local gas concentration of two key species (“flavor”) causes their broadened absorption
lines to impact transmission. A key feature of the expression is the subscript-of-subscript into the tabulated
distributions (dependent on thermodynamic state p and T ) and linear interpolation in 3 dimensions (dT , dp and
dη). This example highlights some features of the DSL that make it vastly more concise and easier to optimize
than the old RRTMG Fortran implementation:

• Purity: Programs in EKL are pure, which means that expressions have no side-effects. This is closely
related to their mathematical formulation, and leaves the compiler open to solutions that make clever use
of memory. In the language, this is reflected through the let binding primitive, which supports scoping
and shadowing (see line 3).

• Implicit loops: Instead of explicit loops, EKL programs are based on tensor primitives or index-metavariable
expressions. This ensures that order dependencies are conscious decisions by the programmer and
leaves the loop structure maximally open for implementation. Going further, Fortran’s element-wise func-
tion opt-in is replicated, allowing those with scalar signatures to be implicitly applied to a tensor (note line
5).

• Einstein Summation Notation (ESN) The well-known ESN [21] allows tensor expressions that include
reductions over known rings to be written naturally and concisely. This transforms tensor expressions into
scalar expressions, which describe how individual result elements are produced. Using ESN, reductions
prone to inadvertently inhibit compiler optimization are natural and safe (see line 9 ff.)

In the legacy RRTMG implementation, the kernel equivalent to line 9 is distributed over around 300 lines
of Fortran code, spread across the 14 band functions. Some of this code is shown in Figure 4 for a direct
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τMg =
∑
dT

∑
dp

∑
dη

nσx,x,dηασx,x,dT,dp,dηkT+dT,p+dp,η+dη,g

1 // Interpolation (snippet)
2 let p_prime = (log(p) - C_LOG_MAX_P_REF) / C_DELTA_LOG_P_REF
3 let p_prime = clamp(0, p_prime, 58)
4 let i_strato = select(p < C_P_TROPO, 1, 0)
5 let j_p, f_p = intfrac(p_prime)
6 let i_p = [j_p, j_p + 1] + i_strato
7

8 // Major contributors
9 let tau_g_M = (n_mix[i_flav[x], x, deta]

10 * f_major[i_flav[x], x, dT, dp, deta]
11 * k_major[i_T[x, dT], i_p[x, dp], i_eta[x, deta], g])

Figure 3 – Example code in EKL.

Figure 4 – RRTMG code snippet in Fortran.

comparison with the conciseness of the DSL. A meaningful comparison is almost impossible due to this well-
known shortcoming of the legacy code. Although the more modern RRTMGP implementation eliminates much
of this code duplication as well, it is still an order of magnitude longer than the EKL implementation.

3.2 Fortran Integration for WRF

In Deliverable D4.2, we described how a DSL such as EKL can be embedded into an existing legacy application
by mimicking the host language. In particular, we were referring to how CFDlang can integrate into Fortran
by syntactically allowing the array definitions to be copied, thus eliminating indexing and Application Binary
Interface (ABI) issues. Our goal was to establish a Fortran Foreign Function Interface (FFI) layer that would
allow embedding the DSL directly into Fortran, and compiling using a preprocessing step.

Embedding in Fortran turned out to be infeasible and less practical than we expected. This is mainly due
to unsolvable ABI issues with Fortran and the structure and data layout of the legacy RRTMG implementation.
To obtain a workable and easily maintained implementation, an ABI has to be frozen manually, unless massive
scope creep at the level of WRF modularization is acceptable. In fact, new radiation schemes in WRF are
known to be notoriously hard to ship and existing ones are tightly coupled within WRF (requiring WRF modifi-
cations). Moreover, the legacy RRTMG scheme is outdated and was not designed for offloading. Hence, a tight
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integration within that module would quickly become obsolete. As mentioned before we thus focus on the CKD
approach which is state-of-the-art, and is the one used by RRTMGP’s gas optics and other modern schemes
such as the ECMWFs ecRad. Our new design came also after consulting experts in the field, including the
authors of RRTMG and RRTMGP.

Figure 5 – FXX template library overview

Nevertheless, solid FFI is still required between MLIR and C++, the latter of which being the language
we wrote the WRF plug-in in. While solutions exist, we provide a more modern C++20 wrapper that facilitates
using memref primitives as introduced by MLIR (see Figure 5). This effectively trivializes the inclusion of kernels
code-generated via MLIR, pinned to some C ABI for subsequent linking into the application, which is the main
practical use of any currently feasible companion DSL compiler.

3.3 Dataflow: Ohua/Condrust

As basis for a language that can express dataflow, we use the Ohua compiler framework [10, 9]. An earlier
prototype of the framework used its own frontend DSL that closely resembled the host language, but differed in
the supported language features and the grammar definition [46]. The current version of the language, instead,
uses a subset of the host language as input (e.g., Rust and Python). This allows the easy reuse of existing
code, which significantly improves the usability of Ohua, one of the key requirements defined in Deliverable
D2.2. More importantly, it also allows for quicker compiler extensions to support new languages. We can use
existing parser and Abstract Syntax Tree (AST) definitions in both the front-end for parsing and the back-end for
code generation. The current description of the syntax and the semantics of the language can be found in [41],
with a more modern version of the language called Condrust. The compilation flow described in Deliverable
D4.2 is now updated as shown in Figure 6.

An Ohua/Condrust program is a composition of calls to both stateless and stateful functions in a separate
file, making it a formal coordination language. As described in Deliverable D4.2, the programming model im-
poses restrictions, some beneficial to safety and ease hardware-software designs. Most notably, passing by
reference is prohibited, and programs follow a strict move semantics. This means that all dataflow dependen-
cies become visible in the program and thread-safety can be ensured.

A key motivation behind using a dataflow-driven DSL in the EVEREST project is that a Dataflow Graph
(DFG) abstracts over the individual computations that form the algorithm. This comes in handy when deploying
such a program onto heterogeneous architectures using the dfg MLIR dialect. The abstraction allows for a tight
integration for off-loading single nodes of the DFG to FPGAs using HLS, as outlined in Section 5. Since the
off-loaded functions themselves are not part of the compilation process, the main difference between offloaded
functions and normal functions is the communication with the nodes. Normal nodes of the DFG communicate
with one another using FIFO queues, both in the parallel Rust runtime as in the parallel MLIR generated
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Figure 6 – Current status of the Ohua/Condrust and dfg compilation flow.

runtime. Communication with an off-loaded node, however, requires actual data transfers from and to the
accelerator. Furthermore, not all data-flow transformations provided by Ohua/Condrust can be trivially applied
to code running on hardware, such as parallelization. To notify the Ohua Compiler (ohuac) of this change,
functions that will be deployed onto the FPGA are annotated with a macro:

#[ kernel(offloaded = true , multiplicity = [1, 1, 1], path = "projection.cpp")]

let cv: CandiVector = projection(gv, mapcell);

The offloaded flag allows the simple toggling of the offloading of a node in the graph. All additional
information in the annotation is required by down-stream tools of the EVEREST SDK, namely Olympus, as will
be explained in Section 4.3 and Section 4.5.

An implementation of the Map Matching algorithm from the Traffic Simulation Use Case, would then look
like this:

fn match_one(gv: GpsVector , mapcell: MapCell) -> RoadSpeedVector {

#[ kernel(offloaded = true , multiplicity = [1, 1, 1], path = "projection.cpp")]

let cv: CandiVector = projection(gv, mapcell);

let t: Trellis = build_trellis(gv, cv, mapcell);

let rsvbb: RoadSpeedVector = viterbi(t, cv);

interpolate(rsvbb , mapcell)

}

3.4 Machine Learning

With respect to language support for Machine Learning (ML) no fundamental changes were applied to the com-
pilation flow described in Deliverable D4.2. This is mainly due to fact that ML frameworks and the community-
standard Open Neural Network eXchange (ONNX) [43] specification used in EVEREST are mature and have
remained stable. Recently, the ML flow also supports torchscript [6] as input language, besides ONNX. The
support of torchscript improves the connection to the community framework Pytorch, which is used to de-
velop and train DNNs. Also, the support of torchscript allowed the integration of post-training quantization
(PTQ) via the open-source tool Brevitas [22].
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4 Intermediate Representations and Transformations

Figure 4 in Deliverable D4.2 sketched the status of the intermediate representations in the project in the alpha
release (replicated in Figure 7 for better readability). The figure captured the concerted effort to achieve
unification at the level of the intermediate representations. Apart from a frontend for Ohua/Condrust and
integration of ML applications, an important missing component was an end-to-end integration with Olympus
for system-level design.
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Figure 7 – IR status and plans in Deliverable D4.2.

Today, the MLIR stack of the EVEREST SDK is much more complete as depicted in Figure 8.This design
follows the design rationale described in Deliverable D4.2. As shown in the figure, external frontends can
generate representations to enter the EVEREST SDK, like torch and tosa. ML applications from TVM can
be read into the jabbah dialect. To converge and optimize the different DSLs for ML, we follow the concept
of Operation Set Architectures [30]. This level of abstraction, captured by jabbah, is also used to optimize
the distribution of ML applications [34]. The SDK provides dialects for the frontends of the kernel language
(ekl), the coordination language (dfg), and the legacy CFDlang (cfdlang). The dialects ekl and cfdlang can
be lowered to an MLIR implementation of the intermediate tensor language [35] (teil) and a new dialect for
the Einstein notation (esn) described in Section 3.1. These abstractions are used to implement a series of
transformations as will be described in this section.

Custom data representations are often needed to truly exploit the efficiency of hardware implementations.
To this end, the SDK includes a set of dialects to properly model custom data types in MLIR[13], namely,
base2, cyclic, bit and ub. The latter is being moved to core MLIR for proper support for undefined behavior.
The remaining dialects handle integration within the EVEREST platform (evp) and system-level optimization
based on the dataflow of the application (olympus). Both are highly relevant for the hardware generation flow
described in Section 5.

In previous deliverables, we have provided details about dialects such as base2, teil, and cfdlang. In this
section, we focus on the new dialects ekl, esn, dfg, evp, and olympus. While most target- and domain-specific
optimizations have been described in Deliverable D4.2 and our corresponding publications, this last phase
increased the technical complexity of our MLIR dialect stack. As a result, additional utility transforms were
introduced, which we mention in the following whenever they become relevant.
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Figure 8 – EVEREST MLIR dialects (in blue) and their integration with other core MLIR dialects (green). Dialects under construction in grey-blue.

4.1 ekl

In Section 3.1, we described how the EKL is designed and what features its front-end possesses. This is
realized using the ekl dialect, which is an MLIR implementation of the EKL front-end analogous to what was
previously reported in Deliverable D4.2. In particular, ekl is an AST for EKL, as well as the IR that holds the
result of expression elaboration during semantic analysis.

The ekl dialect is directly based on cfdlang, which means that it models the syntactical structure of an EKL
program. Conceptually, an ekl program is compiled into an accelerator by simplifying expressions, deciding
on tensor storage and lifetime, and then implementing the resulting side-effecting expressions. In Deliverable
D4.2, we briefly described the canonicalization and expression implementation steps required. In addition to
cfdlang’s features, the ekl dialect now also has first-class support for type-level annotations.

MLIR does not feature a dependently-typed type system. Cutting-edge MLIR-backed language implemen-
tations, such as Mojo and, to some extent, CIRCT, come with their own mock-up of dependent types. EKL
also requires such a feature to implement the user-facing type annotations used to perform automatic Domain-
Space Exploration (DSE) of scalar data types. As shown in Figure 9, we decided to encode such constructs
by representing types as values. Consequently, the MLIR types of ekl operations are in fact only of syntactic
nature, e.g., “any tensor”.

Q+ := [0,∞) ∈ Q

%rat = ekl.type : !ekl.rat
%rat_pos = ekl.type.narrow [0, inf) in %rat

si22_9 := si16_8 t ui21_9

%si16_8 = ekl.type : !base2.si16_8
%ui21_9 = ekl.type : !base2.ui21_9
%si22_9 = ekl.type.super %si16_8, %ui21_9

Figure 9 – Example of EKL type constraints.

As a result, type checking on an ekl program has to be performed in a separate pass, which instantiates
the SSA values representing the concrete types. The well-formedness of such a fully annotated program is
verified using standard MLIR verifiers, which can then act fully locally. Another aspect related to type checking
is the correctness of subscripting and consistent use of index-metavariables. This is mostly left to the esn

dialect, which ekl expressions translate to.

4.2 esn

In Section 3.1, we described a new feature of EKL, which is its ability to represent expressions in ESN. An ESN
expression is a type of tensor expression that is based on index-metavariables and simplifies reductions over
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known rings.

Let A, B denote values of R2. The matrix-matrix product C = AB is given by the the following ESN
expression

AikBkj (1)

By convention, an index appearing only once is bound, and an index appearing exactly twice is a reduction. In
our example, the indices i and j are bound, and k is a reduction. The shape of the result of an ESN expression
is implied by the domains of the bound indices in the order they appear in. We can make this explicit by turning
the expression into an assignment

Cij = AikBkj

The indices i, j, k vary over the result elements, and are therefore local to the expression. An arbitrary but fixed
parameter is called a free index, and must be distinguished from the local indices. The reduction in k can be
made explicit to resolve this issue

Cij = Ai k B k j

=
∑
k

AikBkj

By convention, the domain of a local index is implied by all of its subscript uses. This means that every domain
implied by an operand subscript must be congruent for a given local index. Also, subscript index arithmetic is
not allowed. An ESN expression involving a reduction implies some commutative semigroup. It follows that the
order of reductions is irrelevant and that scalar-associative ESN expressions are also tensor-associative. In
general, ESNs are used when there is an unambiguous semiring defined over the involved scalars.

We implemented an MLIR dialect called esn that represents ESN expressions. An example program is
provided in Figure 10. Its primary purpose is to make tensor expressions accessible to scalar arithmetic trans-
formations, a strong point of ESN. Since ESN expressions imply parallelism and regular loops, esn also serves
to estimate and reduce both complexity and memory. Finally, esn provides a more convenient intermediary for
a front-end lowering path due to its implied shapes.

The esn dialect features an elaboration step that “type checks” the index-metavariables involved in the
expression. This makes it able to work with dynamically-sized tensors, while still eagerly checking static cor-
rectness. This feature is used by the ekl front-end, to elaborate the user expressions, which do not involve the
dimensions. Although this system could be extended for non-congruential index geometries, this is not part of
the ESN, and we were unable to find any uses for, e.g., affine indexing.

4.3 dfg

The dfg dialect has been designed to express KPN-style dataflow graphs with heterogeneous node placement.
It can be generated from a more high-level graph representation, as outlined in Section 3.3. This can then
leverage some of the dataflow transformations described in Deliverable D4.2. However, dfg also features a
custom syntax which allows users to even ergonomically express a graph directly using the dialect.

The dialect consists of the types and primitives necessary to model the two main components of a data
flow graph: nodes (i.e., encapsulated library functions provided by the developer), and edges (i.e., FIFO com-
munication channels between the nodes). It provides a dfg.operator op to define the semantics of the nodes
and dfg.instantiate to instantiate the operator as a node in the graph. For streaming semantics, dfg.loop
provides a way to loop operator execution until connections are closed. The dfg.channel operator creates two
connected dfg.input and dfg.output values. These can be used within an operator to move data to and from
the channels using dfg.push and dfg.pull. Offloaded kernels can be marked as such when instantiating an
dfg.operator.

A complete example of an algorithm expressed in the dfg dialect can be seen in 1. It shows a graph
constructed from three nodes, sum, get_op and pow2. The latter is offloaded onto hardware, the sources of
which reside in the specified file. The sum node runs in a loop, streaming new inputs.
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dfg.operator @sum inputs (%op_a: ui32, %op_b: ui32)
outputs (%a: ui32) {

dfg.loop inputs (%op_a: ui32, %op_b: ui32) outputs (%a: ui32) {
%inp1 = dfg.pull %op_a : ui32
%inp2 = dfg.pull %op_b : ui32

%result = arith.addi %inp1, %inp2 : ui32

dfg.push(%result) %a : ui32
}

}

dfg.operator @get_op outputs (%op_b: ui32) {
%b = func.call @get_op() : ui32
dfg.push(%b) %op_b : ui32

}

dfg.operator @pow2 inputs(%op_c_in: ui32) outputs(%op_d_out: ui32)
attributes { evp.path = "src.cpp", multiplicity = array<i64: 1, 1>}

// algorithm entry point
func.func @run_dfg(%op_a: ui32) -> ui32 {
%op_a_in, %op_a_out = dfg.channel() : ui32
%op_b_in, %op_b_out = dfg.channel() : ui32
%op_c_in, %op_c_out = dfg.channel() : ui32
%res_in, %res_out = dfg.channel() : ui32
// inputs
dfg.push(%op_a) %op_a_out

dfg.instantiate @get_op outputs(%op_b_out)
dfg.instantiate @sum inputs(%op_a_in, %op_b_in) outputs(%op_c_out)
// kernels seamlessly integrate
dfg.instantiate offloaded @pow2 inputs(%op_c_in) outputs(%res_out)

%res = dfg.pull %res_in : ui32

return %res : ui32
}

Listing 1 – A complete example of an algorithm implemented in the dfg dialect.
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%C = esn.let [%i, %j] : f64 {
%k = reduction
%A_ik = subscript %A[%i, %k] -> f64
%B_kj = subscript %B[%k, %j] -> f64
%C_ij = arith.mulf %A_ik, %B_kj : f64
yield %C_ij : f64

} reduce (%lhs, %rhs) {
%sum = arith.addf %lhs, %rhs : f64
yield %sum : f64

}

(a) Domain-implicit form

%c1 = index.constant 1
%dimA_1 = tensor.dim %B, %c1 : tensor<8x?xf64>
%dimB_1 = tensor.dim %B, %c1 : tensor<3x?xf64>
%C = esn.let [%i, %j] : f64 {

%k = reduction
upper_bound(%i) = 8
%pi = to_index %i
upper_bound(%k) = %dimA_1
%pk = to_index %k
%A_ik = subscript %A[(%pi), (%pk)] :

tensor<8x?xf64>↪→

upper_bound(%k) = 3
upper_bound(%j) = %dimB_1
%pj = to_index %j
%B_kj = subscript %B[(%pk), (%pj)] :

tensor<3x?xf64>↪→

%C_ij = arith.mulf %A_ik, %B_kj : f64
yield %C_ij : f64

} reduce (%lhs, %rhs) {
%sum = arith.addf %lhs, %rhs : f64
yield %sum : f64

}

(b) Domain-explicit form

Figure 10 – esn program for eq. (1)

A data flow graph runtime described by this dialect spawns all instantiated nodes of the graphs with their
connections in place. All nodes execute in parallel, the blocking channel semantics ensuring an efficient use of
computing resources during execution. When an operator terminates, all used input and output channels will
be closed. Operators that are internally using a dfg.loop will be executed in an endless loop until one input or
output channel is broken, i.e., the other end of the channel is missing. If that happens, the operator terminates
immediately, not processing any further input and instead triggering all linked nodes to terminate execution,
too. This ensures that the runtime cannot get stuck in an endless loop without further data.

Non-looped operators are used, for instance, to capture environment variables that are injected into the
graph. This usually includes the initial inputs to the computation, ensuring the computation pipeline shuts
down after processing all inputs.

For offloaded nodes, a wrapper will be generated for the host-side driver of Olympus, which will be explained
in Section 4.5.

Other dialects that provide abstractions for this Model of Compute (MoC) exist, most notably the handshake

dialect [19] from the CIRCT project. However, this abstraction is not usable for the EVEREST project, as it has
been designed for use in hardware generation and, therefore, uses the handshake protocol for data exchange,
which is not necessary here. Furthermore, it uses implicit FIFO channels, giving users no explicit control over
their use and sizing, which is an integral part of the abstraction provided through dfg.

4.4 evp

The evp dialect is a dialect that, looking forward, will represent high-level connections between software and
hardware components for heterogeneous deployments. Its operations assist in relocating nodes of dataflow
graphs across heterogeneous compute devices. It is used by the evp tool, which can be seen as the equivalent
of what a linker is in traditional software deployments. More information will be provided in Section 6.2 in the
context of the final code generation flow of the SDK.
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4.5 olympus

Kernel operator

"olympus.kernel"(%2, %3, %4) {

callee = "matmul",

latency = 795, ii = 268,

ff = 3106, lut = 6174, bram = 61, uram = 0, dsp = 48,

operand_segment_sizes = array<i32: 2, 1>,

path = "dir/matmul.cpp"

} : (

!olympus.channel<i32>, !olympus.channel<i32>,

!olympus.channel<i32>

) -> ()

Return: void (Any outputs are the last parameters)

Attributes:

callee : The name of the kernel implementation (C function, Verilog module, etc)

latency, ii : Timing estimates (latency, initiation interval) from kernel HLS/synthesis

ff, lut, bram, uram, dsp : Resource estimates from kernel HLS/synthesis

operand_segment_size : Defines which parameters are inputs and outputs. (In this example, the ‘2’ in index
0 means the first two parameters are inputs. The ‘1’ in index 1 means the next 1 parameter is the output.)

path : Where to find the kernel implementation file.

Parameters: The inputs and outputs as determined by operand_segment_size. Either scalar data of primitive
types or olympus.channel types. In the same order as in the kernel implementation.

Channel operator
%2 = "olympus.channel "() {

paramType = "stream",

depth = 20

} : () -> (

!olympus.channel <i32 >

)

Return: The channel, to be used as input/output operands in kernel operators.

Attributes:

persistent : (optional, default: false) Boolean. If true, this data is transferred between the host and
HBM/DDR once during initialization. An olympus.index can be associated in order for the kernel to use different
portions per iteration.

paramType : describes the properties of the data in one of three ways:

• “stream”: Must be produced and consumed in the same order and consist of small, statically sized
elements.

• “small”: Can be random access, but in total the data needed for a single kernel iteration should be at
most on the scale of 100s of kB and be organized of simple structures without nesting or indirection.

• “complex”: Can be anything: huge, random access, have indirection, and/or be constructed of nested
structures.

depth: Describes how large the data is in total. If paramType==stream, depth is the maximum necessary channel
depth. If paramType==small, depth is the number of elements. If paramType==complex, depth is the number of
bytes.

Channel type
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!olympus.channel <i32 >

Type parameter: A signless integer of arbitrary bitwidth. The interpretation of the data is not important, only
the width. Therefore, a 32-bit float, a fixed-point value with 10 integer bits and 22 fraction bits, and a 32-bit
integer should all be represented as ‘i32’.

Index operator

%2 = "olympus.index"( %2 ) {

depth = 4

} : (

!olympus.channel <i32 >

) -> ()

Return: void

Attributes:

depth: Describes how large the data needed for one iteration is. It should be a factor of the depth of the
associated persistent channel.

Parameters: The associated channel. The value of the index along with the depth (used as a stride) will be
used to select a portion of the data from this channel for transferring between HBM/DDR to the kernel.

Index type

!olympus.index <i32 >

Type parameter: The type of the scalar value used as an index.

One advantage of this flow is that it directly enables us to target CPUs, and also puts graphical processing
units (GPUs) in range of future extensions. As an example, Figure 11 shows the inverse Helmholtz operator
kernel in the cfdlang dialect in MLIR, next to an excerpt of its LLVM-IR lowering. This lowering is obtained
using standard MLIR components directly from the bottom of our dialect hierarchy and can be processed with
LLVM optimizers for targeting many different CPU architectures.

module {
c fd lang . program {

c fd lang . i npu t @S : [11 11]
c fd lang . i npu t @D : [11 11 11]
c fd lang . i npu t @u : [11 11 11]
c fd lang . de f ine @t : [11 11 11] {

%0 = cfd lang . eva l @u : [11 11 11]
%1 = cfd lang . eva l @S : [11 11]
%2 = cfd lang . prod %1, %0 : [11 11] , [11 11 11]
%3 = cfd lang . cont %2 : [11 11 11 11 11] i nd i ces [2 5 ]
%4 = cfd lang . prod %1, %3 : [11 11] , [11 11 11]
%5 = cfd lang . cont %4 : [11 11 11 11 11] i nd i ces [2 5 ]
%6 = cfd lang . prod %1, %5 : [11 11] , [11 11 11]
%7 = cfd lang . cont %6 : [11 11 11 11 11] i nd i ces [2 5 ]
c fd lang . y i e l d %7 : [11 11 11]

}
c fd lang . de f ine @r : [11 11 11] {

%0 = cfd lang . eva l @t : [11 11 11]
%1 = cfd lang . eva l @D : [11 11 11]
%2 = cfd lang . mul %1, %0 : [11 11 11] , [11 11 11]
c fd lang . y i e l d %2 : [11 11 11]

}
c fd lang . output @v : [11 11 11] {

%0 = cfd lang . eva l @r : [11 11 11]
%1 = cfd lang . eva l @S : [11 11]
%2 = cfd lang . prod %1, %0 : [11 11] , [11 11 11]
%3 = cfd lang . cont %2 : [11 11 11 11 11] i nd i ces [1 5 ]
%4 = cfd lang . prod %1, %3 : [11 11] , [11 11 11]
%5 = cfd lang . cont %4 : [11 11 11 11 11] i nd i ces [1 5 ]
%6 = cfd lang . prod %1, %5 : [11 11] , [11 11 11]
%7 = cfd lang . cont %6 : [11 11 11 11 11] i nd i ces [1 5 ]
c fd lang . y i e l d %7 : [11 11 11]

}
}

}

; ModuleID = ' < s td in > '
source_f i lename = " LLVMDialectModule "

@__constant_11x11x11xf64 = p r i v a t e constant [11 x [11 x [11 x double←↩
] ] ] z e r o i n i t i a l i z e r

dec lare i 8 * @malloc ( i64 )

dec lare vo id @free ( i 8 * )

de f ine vo id @kernel ( double * %0, double * %1, i64 %2, i64 %3, i64 %4, ←↩
i64 %5, i64 %6, double * %7, double * %8, i64 %9, i64 %10, i64 ←↩
%11, i64 %12, i64 %13, i64 %14, i64 %15, double * %16, double * ←↩
%17, i64 %18, i64 %19, i64 %20, i64 %21, i64 %22, i64 %23, i64 ←↩
%24, double * %25, double * %26, i64 %27, i64 %28, i64 %29, i64 ←↩
%30, i64 %31, i64 %32, i64 %33) {

%35 = c a l l de re fe renceab le_or_nu l l (10648) i 8 * @malloc ( i64 10648)
%36 = b i t c a s t i 8 * %35 to double *
br l a b e l %37

37: ; preds = %63, %34
%38 = phi i64 [ %64, %63 ] , [ 0 , %34 ]
%39 = icmp s l t i64 %38, 11
br i 1 %39, l a b e l %40, l a b e l %65

40: ; preds = %37
br l a b e l %41

41: ; preds = %61, %40
%42 = phi i64 [ %62, %61 ] , [ 0 , %40 ]
%43 = icmp s l t i64 %42, 11
br i 1 %43, l a b e l %44, l a b e l %63

44: ; preds = %41
br l a b e l %45

45: ; preds = %48, %44
%46 = phi i64 [ %60, %48 ] , [ 0 , %44 ]
%47 = icmp s l t i64 %46, 11
br i 1 %47, l a b e l %48, l a b e l %61

48: ; preds = %45
%49 = mul i64 %38, 121
%50 = mul i64 %42, 11
%51 = add i64 %49, %50
%52 = add i64 %51, %46

Figure 11 – Example lowering from cfdlang to LLVM-IR (excerpt).
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4.6 Connecting to HLS

As discussed in Deliverable D4.2, we guide HLS at a low-level abstraction, such as polyhedral descriptions in
the affine dialect. During our higher level MLIR transforms, we can establish resource estimates in terms of
memory bandwidth. On the polyhedral level, we use this to reschedule sub-kernel regions for HLS, inserting
annotations. This means that we output vendor-specific pragmas, such as Xilinx’s #pragma HLS <?>, into an
interchange format, such as C99. Flows with better MLIR integration, such as Bambu, remove the interchange
format in favor of passing this information directly in MLIR. As discussed in Deliverable D4.2, we retain the
possibility of generating different variants of a kernel or function. This is enabled by expression rewriting and
different polyhedral schedules (to generate different pipelines with intermediate buffers). These variants can
be used for runtime selection.

4.7 Machine Learning Abstractions and Optimization

The ML flow to compile Deep Neuronal Networks (DNN) to FPGAs is implemented in the tool DOSA [28] using
Operation Set Architectures [31]. In the following, we report on considerable progress with respect to the status
from Deliverable D4.2. In the past few years, a large number of DNN-to-FPGA compilation flows have been
proposed and implemented (see Section 4.7.1), all of them with limited application scope and scalability. The
goal of DOSA was not to create yet another specialized compiler, but to create an organic compiler, which
is capable of harnessing the core capabilities of existing ML-to-FPGA compiler frameworks. Today, DOSA
provides interfaces to the most mature ML-to-FPGA compilers, but can be easily extended to include more
and/or future compilers as well (see Section 4.7.2).

4.7.1 Operation Set Architectures

The FPGA community has been researching the implementation of neural networks on FPGAs for nearly 30
years, resulting in a Cambrian explosion [12] of DNN-to-FPGA tools1 that scale from Edge to Cloud and target
a wide variety of applications. Despite this variety, the architectures generated by all these existing frameworks
can be sorted into two categories: Engine-type and streaming-type architectures, as depicted in the lower
half of Figure 12.

The engine-type (see 4a in Figure 12) consists of one or multiple custom-designed processing units (i.e.,
engines) that can execute domain-specific instructions and are often referred to as NPU or xPU. These pro-
cessing engines frequently contain dedicated units for matrix multiplication, vector processing, and non-linear
functions, since these are the mathematical foundations of today’s DNNs. Consequently, a DNN is broken
down by a compiler into instructions that those processing engines can handle. These instructions are issued
by a control unit at run-time and scheduled based on memory dependencies and processing unit availability.
Although this pattern is simple, the design space is huge: For example, the processing elements can contain
various specialized units with different data sizes or types. Examples of this type of architecture are TVM’s
VTA [18], Xilinx’s Vitis AI [47] and Microsoft’s Brainwave [12].

The streaming-type architecture (see 4b in Figure 12) integrates all the application-specific operations in
the FPGA logic, so that the data just streams through the fabric at run-time. This type of architecture can
achieve a higher throughput with lower latencies at the cost of higher resource usage than the engine type.
The design space of this template is also huge. Starting with data types of different precision per operation to
a variety of unrolling of loop parallelisms and pipelining options. Example frameworks that generate this type
of accelerators are hls4ml [8], Haddoc2 [1], and FINN [3].

Both architecture templates, streaming and engine, are well justified for different reasons. The streaming
template is best used for DNNs that require high throughput and/or low latency. The engine-type accelera-
tors are better for large DNNs in latency-relaxed environments or if there are insufficient FPGA resources to
implement the streaming type.

Throughout the project, we advocated for deploying mixed architectures built upon a combination of spe-
cialized streaming- and engine-type accelerators.
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%1 = conv2d(%0, %w0, %b0, kernel=(5,5), padding=0, layout=NCHW) 
%2 = relu(%1) 
%3 = max_pool2d(%2, kernel=2, stride=2) 
%4 = conv2d(%3, %w1, %b1, kernel=(3,3), padding=0, layout=NCHW) 
....

(simplified print of AST)

1

2a 2b
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Figure 12 – Basic principle of the Operation Set Architecture (OSA). An operation can be executed either by lowering it to an instruction (for engine-type
accelerators, left-hand side) or by implementing it as parameterized hardware IP core (for streaming-type accelerators, right-hand side).

To compare different mixtures of architecture templates and to combine them into optimal solutions, we
propose the operation set architecture (OSA) principle. The levels of abstraction of these operation sets are
selected to allow the compiler to make meaningful comparisons of performance and resource metrics between
totally different implementations.

With respect to the intermediate representation (IR) snippet of an abstract syntax tree (AST) in Figure 12
1 , the conv2d, relu, and max_pool2d constitute components of such operation sets. In essence, the operation

sets are groups of those components. We selected this level of abstraction after we revisited the long list of
specialized frameworks, existing domain-specific languages (DSLs), IRs, and optimization techniques of exist-
ing tool flows for DNNs. We observed that compilers of frameworks that target engine-type accelerators apply
the heaviest optimizations. This results from the fact that DNNs are compiled into engine-type instructions, for
which well-known optimization methods from classical CPU and GPU compilers can be used. Such optimiza-
tions include constant folding, dead code elimination, operator fusion, elimination of common sub-expressions,
simplify paddings, and simplify the data flow graph for inference. Surprisingly, frameworks targeting streaming-
type accelerators perform either no or only a few hardware-specific optimizations [1, 45, 49, 20] and even leave
constant folding to the synthesis tools in most cases.

Therefore, we concluded that the level of abstraction for comparing different implementations should be
chosen such that the decision between engine-type and streaming-type accelerators happens after these
“basic” optimizations but before the program gets lowered further, since many of these optimizations would
help the streaming-type accelerators, too. Following this path, the compiler can optimize a DNN graph above
or at this level of abstraction (cf. 1 in Figure 12), detached from the lower-level details of the execution of
one operation. This level is similar to the abstraction levels used by popular DSLs like RelayIR [18] [37] or
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ONNX [44]. Only after that, the compiler decides between engine and streaming implementations of each
operation. Therefore, such a higher-level operation is either lowered to engine/NPU/xPU-specific instructions
or synthesized as a parameterized IP block for streaming accelerators. Engine operations are lowered into
engine/NPU/xPU specific instructions 2a , and streaming operations are synthesized as a parameterized IP

block 2b .

From an AST 1 point of view, all operations all operations are somehow available specialist frameworks,
illustrated with the arrows 3a and 3b . How the operations will be executed in detail is up to the different

frameworks (cf. 2a and 2b ). Thus, each of these frameworks supports different a set of operations through

its chosen target architectures (cf. 4a and 4b ). However, the AST can be optimized and transformed without
considering these details. In the example of Figure 12, the first two higher-level operations, conv2d and relu,
are executed on an engine-type accelerator, while the following two operations, max_pool2d and conv2d, are
then executed by implementing IP cores in a streaming way.

The method 1 — 4 of Figure 12 is what we refer to as “Operation Set Architecture”, because it provides
a meaningful unified abstraction level and utilities to compare and optimize different implementations of similar
sets of operations.

4.7.2 DOSA: Distributed Operation Set Architectures using organic compiler prin-

ciples

Our goal is to develop an organic compiler that analyzes a given DNN and selects the best-possible template-
type and implementation offered by several frameworks for each arithmetic operation of this DNN. This compiler
should understand a conventional DNN exchange standard and provide the user with insights on achievable
performance, possible bottlenecks, and how the user’s constraints influence the architectural decision. The
DSE by this compiler should also consider partitioning, with model- and device-parallelism as options. They
should ideally take only a few seconds to allow frequent iterations and optimizations with a user in the loop.
Therefore, this compiler must be able to predict performance and resource consumption for each possible
implementation quickly and reliably and must use meaningful criteria to compare these estimates.

Figure 13 shows the flow diagram of our organic compiler. Such an organic compiler requires a DSE phase
that can analyze the DNN and that knows about the characteristics of the available frameworks. Consequently,
an organic compiler has four inputs: The DNN A , specified in a community standard as, e.g., ONNX [43],
the targeted performance and resource constraints B , the description of the targeted devices E , and the
available specialist frameworks as library D .

The flow starts 1 with the import of the DNN and the execution of straightforward optimizations, such
as constant folding, dead code elimination or operator fusion. Also, an AST of the DNN is built. In paral-
lel, the library of specialist DNN-to-FPGA frameworks D and the library of available target platforms E are
imported 2 and prepared for the DSE C .

In the next step 3 , the characterizations of step 2 are then used to annotate the AST of the DNN
operation-wise using a roofline-like analysis, together with the library of available platform characterizations.

Afterward, having a detailed AST annotation, the DSE phase starts with partitioning the DNN 4 , if required
by the size or throughput requirements of the DNN. The partitioning is based on the roofline analysis and
bandwidth analysis. Next, based on an updated roofline analysis and the estimated latencies between nodes,
high-level architectural decisions are made 5 . Foremost, this decision involves deciding if weights of the
operations of the DNN can be stored in an off-chip memory or if it has to stay on-chip because the available
bandwidth would not allow to load them fast enough (cf. [31, 28]). Also, the best available specialist framework
that can implement the decided micro-architecture with the derived performance requirements is selected.
Next, 6 , if multiple target devices are available, the best candidates are selected in this step. This step also
includes calculating the resources necessary for the glue logic between the selected accelerator blocks. Here,
it could be that this glue logic consumes more resources that are left on some devices. In that case, this
result is annotated, and the compiler continues with another partition step. After a valid solution is found, or
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Figure 13 – Flow of an organic compilation to (distributed) FPGAs.

if the compiler fails to find one, the user is informed about the resulting performance, resource footprints, and
potential bottlenecks F .

As the seventh step 7 , the communication details between FPGA nodes are decided if the solution consists
of multiple nodes. This involves finding the best synchronization pattern and deciding the type of serialization
of multi-dimensional tensors. These decisions influence the latency between FPGA nodes only minimally since
they are all implemented in a data-flow architecture as part of the network stack of the FPGA logic. For the
inter-node communication, DOSA builds on the ZRLMPI framework [33, 32].
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5 Hardware Generation Flow

The EVEREST compilation flow includes a flow to automate the generation of complex hardware architectures
on FPGA. Our hardware generation flow aims at optimizing the computation of the kernel implementations
produced by the fronted compilers and the data transfers with local and remote memories. Also, it supports
multiple backends due to the different types of nodes envisioned in the EVEREST target platform.

The flow starts from the code produced by the frontend compiler, metadata for on-chip memory optimization,
and a JSON file that includes platform details (e.g., type of the target FPGA, available resources, number and
bandwidth of memory channels). It also requires the MLIR description of the kernel connectivity (Olympus
dialect, cf. Section 4.5). The flow performs the following steps:

• it applies hardware-oriented optimizations and produces the hardware description of the kernel obtained
from the compiler (Section 5.1 or Section 5.2 in the case of ML operators);

• it optimizes the on-chip memories by searching for sharing opportunities (Section 5.3);

• it creates the system-level description of the hardware architectures (Section 5.4). Based on the char-
acteristics of the target FPGA node (either network- or bus-attached), the system generation part can
perform communication optimizations or replicate the kernels to operate in parallel while coordinating the
associated data transfers. In this step, it also creates the necessary files to interface with the proper
synthesis tools and generate the bitstreams.

• it generates the specific implementations of the host code functions that reflect the transformations ap-
plied during the creation of the hardware architecture, along with interfaces with the runtime (Section 6).

In particular, this flow allows us to decouple the optimizations of the kernel and the system. The compiler
produces the high-level description of the kernel, and the flow supports different HLS tools (e.g., Xilinx Vi-
vado/Vitis HLS or Bambu) to create the corresponding hardware description. The system specification and
the corresponding HLS depend on the synthesis flow used to target the specific FPGA node. For example,
we use Vivado HLS 2019.2 for IBM cloudFPGA nodes and Vitis HLS 2021.1 for the Xilinx Alveo nodes (see
Section 5.4.2 for more details).

5.1 Hardware-Oriented Optimizations and Kernel Generation

The EVEREST SDK uses a combination of HLS tools and hardware generators to create the hardware descrip-
tions of the kernels identified by the compiler. As input, the kernel generation part supports C/C++ (synthesized
with commercial HLS tools or Bambu), LLVM bitcode (supported by Bambu), and convolutional models (cur-
rently supported by DOSA through 3rd-party libraries). Each of these flows includes specific hardware-oriented
optimizations to improve the hardware generation.

When the compiler flow emits C/C++, we currently use Bambu or Xilinx HLS tools to synthesize the corre-
sponding hardware descriptions. In both cases, the ap_fixed library is used to specify custom data types so
that they can be automatically synthesized. Table 2 summarizes the main differences in the features supported
by Bambu and the Xilinx HLS tool, which can be used to assess which tool is the best choice in different situa-
tions. For example, applications from the traffic simulation use case in EVEREST that heavily rely on C++ with
complex data structures and Standard Template Library containers should use Bambu, because making them
compatible with Vitis HLS would require extensive manual rewriting of the code. The optimization features cur-
rently missing in Bambu (array partitioning, dataflow) can be implemented through MLIR as it has been done
for loop pipelining, exploiting direct synthesis of MLIR through the Clang-LLVM frontend.

The PandA Bambu HLS tool is used within the EVEREST SDK to experiment with new features within
the HLS flow. The HLS flow starts from a high-level description of the application and is able to generate an
equivalent RTL design for a given target FPGA. The only constraints on the input description are about recur-
sive functions and memory allocation. Only tail recursive functions are allowed for the HLS flow to complete
successfully. Furthermore, dynamic memory allocation is supported but strongly discouraged, since it is quite

D4.5 - Final report of the compilation framework 26



http://www.everest-h2020.eu

Feature Bambu Vitis HLS
Input languages C/C++/LLVM IR C/C++
Target hardware Xilinx/Intel/Lattice/NanoXplore

FPGAs, ASICs
Xilinx FPGAs

Codebase Open-source Proprietary
Loop optimizations Unrolling, pipelining (through MLIR) Unrolling, pipelining
Array partitioning No Yes
Dataflow support No Yes
Custom floating-point formats Yes No
C++ support Complete (STL through ETL library) No struct arguments, no

pointer-to-pointer, no STL
Table 2 – Feature support in Bambu and the Xilinx HLS tool.

inefficient when implemented on an FPGA target. The input formats accepted by the HLS tool are both C/C++
descriptions and LLVM IR descriptions. This is possible since Bambu exploits as front-end of the HLS flow
standard compilers such as GCC and Clang whose intermediate representation is then converted to the inter-
nal Bambu IR. This means any input description which is supported by the exposed front-end compilers can
be fed to the HLS flow of PandA Bambu. In the EVEREST design flow, the MLIR description generated after
the optimizations covered in previous sections is lowered into the LLVM IR dialect and mapped to an equiva-
lent LLVM IR description passed to Bambu for HLS. Apart from the application description, the HLS flow also
requires as inputs some metadata to guide the hardware generation process. A top level interface has to be
defined to specify how parameters are exchanged between the accelerator and the host and specific memory
interface types may be defined too, such as AXI interfaces. A target board and clock frequency must be set, so
that the back-end of the HLS flow is able to generate a target specific RTL description and a proper scheduling
of the operations to accommodate the required clock period. This information is extracted from the platform
description file and passed to the tool. Finally, as a result of the HLS flow, an RTL description equivalent to the
input application description is generated. The accelerator design will expose the required I/O interface and
will implement a target optimized architecture to run the input application. The generated RTL description can
be then passed to the subsequent system integration step as a custom black-box.

Besides PandA Bambu, the EVEREST SDK can also invoke 3rd-party tools or use domain-specific li-
braries to generate Hardware Description Language (HDL) code, especially for ML applications, if the ML
compilation flow detects that the usage of such libraries would produce the better result. One example is the
usage of the Haddoc library [1] for specific convolutions. In this case, DOSA generates the required Tool Com-
mand Langauge (TCL) scripts or meta-data represented in JavaScript Object Notation (JSON) to invoke those
domain-specific 3rd-party tools.

In the following, we detail how the computation-related optimizations described in Deliverable D3.2 are
integrated into the EVEREST compilation flow.

5.1.1 Loop Pipelining

The approach we proposed in [7] aims to leverage high-level code optimizations to provide a hardware-oriented
input description to the HLS. Figure 14 shows the main steps and tools involved. The input MLIR code, which
may contain loops to be pipelined, is first passed to a scheduler to obtain a loop iteration schedule. Code
transformations are applied to the input code to reorganize the by improving the instructions parallelism. The
resulting code is finally passed to the HLS tool to generate an accelerator description in Verilog/VHDL.

Loop pipelining requires a scheduling phase and a code generation phase. A single iteration of a loop
may contain many operations which must be serialized because of data dependencies, thus they can not be
run in parallel. Loop pipelining allows to schedule operations from different original iterations together: as
these operations would not depend on each other, they could be executed in parallel without constraints. By
overlapping original iterations, loop pipelining eliminates the parallelization constraints: all operations within
the same iteration are independent now, since they belong to different iterations of the loop, so they can be
executed in parallel.
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Figure 14 – Overview of the optimization flow for synthesis-oriented loop pipelining starting from MLIR description.

Within the proposed flow, scheduling is performed by HatSchet, and code generation is implemented as a
set of transformations in MLIR; the pipelined loop is then passed to Bambu to obtain an HDL implementation.
It represents an alternative to other loop pipelining approaches that delegate scheduling and pipelining to the
HLS tool itself. Bringing loop pipelining (and possibly other optimizations) outside the scope of the HLS tool has
significant advantages: for example, the developer is more in control of the applied techniques, as their effects
are visible in the transformed IR. Moreover, applying transformations on a specialized, higher-level abstraction
increases flexibility, portability, and requires less time than implementing and exploring different techniques
within the HLS tool. Finally, MLIR is built to allow easy integration between different optimizations: this means
that loop pipelining may be combined with other techniques to create inputs to the HLS tool that are more
appropriate to generate efficient hardware accelerators.

5.1.2 Custom Precision Floating-point Data Types

Custom floating-point data types are available within the EVEREST SDK and are implemented by the PandA
Bambu HLS framework. They may be used by feeding specific flags to the HLS tool along with the input
description of the application or they can be used directly within the application description language as a
library through a C API.
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Figure 15 – Sample flow of custom floating-point application implementation through PandA Bambu HLS starting from generic input representation

The former case does not require any modification of the input description which is using standard floating-
point data types. These types will be converted by the HLS tool following function-scope directives fed to the
tool as command line options: each directive may require a custom floating-point format to be applied to a
single function or function tree (a top function and all those called by it). Conversion from and to custom data
types is handled internally by the synthesis flow in this case, providing fully automated translation of the input
description, as shown in Figure 15. Conversely, the latter case leaves complete freedom to the upper levels
of the EVEREST SDK to exploit the templatized floating-point functional units offered by the HLS component
library. This is the case for the base2 dialect introduced in previous deliverables. The input application is con-
verted to base2 dialect and custom data types are integrated at MLIR-level into the intermediate representation.
Standard floating-point types are converted to custom types before the IR is fed into the HLS tool and oper-
ations involving floating-point custom types can be converted into function calls to corresponding templatized
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Figure 16 – One example of a DNN spread (PTTDNN) across 9 FPGAs. The CPU client just performs send and receive calls [28].

functions from the Bambu HLS library. Instead, when quantization from floating-point to fixed-point is applied,
floating-point operations and types are replaced with integer ones during the lowering process from MLIR to
LLVM IR. Anyhow, both cases will benefit from the rich set of inter-procedural transformations and optimizations
offered by the HLS flow. Custom floating-point support is enabled by an internal C library available within the
PandA Bambu HLS tool: the library implements templatized floating-point functional units for basic arithmetic
operations, comparisons, and standard-to-custom and custom-to-custom type conversion. Since templatized
cores have been implemented as a library, separately from the HLS tool, they can be integrated into a generic
application at any level without issues. These operators are then integrated, following one of the two flows just
defined, into the application description that is then further optimized along the synthesis flow. The end result is
thus featuring custom floating-point functional units for each of the required data types. Furthermore, floating-
point cores, both standard or custom precision, are commonly implemented by state-of-the-art approaches as
generic functional units from an RTL component library, thus they cannot be considered by the HLS flow nor
optimized during its execution. Conversely, the offered implementation integrates the actual functional units IR
into the input application IR enabling a fine grained optimization of their design. With this novel approach, the
architecture of the floating-point functional units is optimized along with the whole application description re-
sulting in ad-hoc improvements on the standard functional units design. The resulting accelerator design then
features custom precision floating-point computation with application-specific implementations of the required
arithmetic operators and mathematical functions.

Adoption of custom floating-point data types may result in many benefits for the generated hardware accel-
erator such as lower computational latency, lower resource usage and power consumption, and faster memory
access due to the reduced bitwidth, as already discussed in Deliverable D3.1.

5.2 Partitioning to Distributed FPGAs

Once the AST is optimized and each node, i.e., a Relay IR instruction or operation, is annotated with its
potential implementations and the required performance, DOSA has to perform the DSE and select the best
possible implementation.

The DSE is done multiple times, each with different hyper-parameters. Such hyper-parameters are, for ex-
ample, if the switching costs should be considered early or late, how many operations the DSE should consider
for its current decision, or which target hardware to assume first, if multiple are available. One pass of the DSE
consists of eight steps: In the first step, (cf. box 4 in Figure 13), for each operation, the implementation candi-
dates (c.f. 2a and 2b in Figure 12) are sorted by performance, latency, or resource, depending on the overall
optimization goal. Then, the best engine-type and streaming-type candidate are are analyzed for violations
of any of their roofline borders. If only one type is possible, this one is selected as implementation type for
this operation. Otherwise, the engine type is selected tentatively, since engines are in general more efficient.
Please note, at this step, only the type of the micro-architecture is selected, not the concrete implementation
itself.

Second, a greedy algorithm now goes through the AST and selects for each operation the contract with
the lowest resource consumption that still fulfills the performance requirements. Here, this decision could be
influenced by the consideration of switching-costs, as configured by the hyper-parameters. Switching-costs are
the FPGA resources that must be spend to connect two different frameworks with adapters for the data-path.
Hence, selecting two sequential operations with the same OSG could save FPGA resources. At the contrary,
the second operation could have better available implementations, therefore it could be worth the costs. To
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compare all possible solutions, different DSE passes consider different numbers of sequential operations. If no
implementation is available that fits within the resources of one FPGA, the operation is parallelized at this step.
For example, a convolution that produces 64 output feature maps can be split in two with 32 output feature
maps each. Those operations are later scheduled on different nodes.The third step then splits the FPGA
nodes horizontally, if the selected contracts including switching costs exceed the targeted utilization of the
FPGA nodes. Due to routing difficulties, it is not recommended to utilize more than 70 – 80% of specific FPGA
resources. Horizontal splitting refers here to scheduling the operation that exceeds the resource budget and
all its following operation on a new FPGA node that comes behind the current FPGA node. Hence, horizontal
FPGA nodes form a pipelined model parallelism.

Fourth, the DSE pass ensures that all operations scheduled on the same node have the same parallelization
factor. For example, if the first operation on the node is a split convolution, the following activation must be
split as well. This is called vertical splitting, since the same pipeline step shared across multiple FPGAs
and is another form of model-parallelism. As one example, Figure 16 visualizes these two different forms of
model parallelism for a six layer CNN, distributed across five horizontal pipeline stages using nine FPGAs in
total. Next, as fifth step, nodes that do not fulfill performance goals or over-saturate the network bandwidth
are instantiated multiple times and the incoming requests are later distributed using a round-robin procedure.
This is equivalent to (partial) data parallelism of the DNN model. Therefore, these parallel nodes only need to
compute 1/X of the data, hence the required performance and bandwidth is reduced by a factor of X. The
sixth step traverses the AST once more and selects for each FPGA node the best FPGA device, if multiple
hardware targets are still possible. This step is using a roofline analysis as a basis to minimize the waste of
unused bandwidth or logic resources, i.e. trying to select the device with the lowest, but still fitting roof. The
seventh step combines sequential contracts, i.e. implementation candidates, of the same OSG to avoid the
generation of unnecessary wrappers and data-path adapters. The last step of each DSE pass updates all
performance annotations and checks if the performance goals are fulfilled at all levels.

Finally, after performing multiple DSE passes with different initial conditions and hyper-parameters, the
draft with the lowest resource costs is selected, in case multiple drafts fulfill the performance goals. If no valid
implementation could be found, the user is notified about the reasons. For example, the resource budget is
too low, or one operation is not supported by any available framework. In the case the optimization goal is
to minimize the resource footprint, i.e. using as few FPGA nodes as possible, some of the steps above are
skipped.

5.3 Memory-Related Optimizations

In this section, we describe how the data management techniques described in Deliverable D3.2 are imple-
mented and included into the EVEREST SDK. Such optimizations and the associated hardware generation
process can be easily adapted to many tensor-based kernels like the ones present in the EVEREST use
cases. Also, the same optimizations are valid for all variants of the target architecture, only with different
parameters (e.g., the number of memory channels, the number of FPGA resources, the bus bit-width, etc.)

On-Chip Memory Sharing. We run Mnemosyne on the metadata produced by the compiler to generate
the RTL of the on-chip memory architecture associated with each kernel. In particular, Mnemosyne uses
the buffer compatibility graph to identify opportunities for sharing the physical on-chip memory banks without
performance overhead [26]. Sharing opportunities can be exploited when distinct internal buffers have no
overlapping lifetime and so they can share the same physical banks. Such memory architecture implements
the logic to access the same memory banks from different kernel interfaces [14, 26]. Mnemosyne wraps the
RTL kernel description (produced by HLS) with the resulting RTL description of the kernel memory architecture
to expose only input and output ports to the computational units. This conceptual interface is then used for
integration of the kernel into the Computational Unit (CU) in a transparent way.

Host-FPGA Double Buffering. This optimization requires changes in the CU wrapper to determine on
which memory channel the CU should operate at each time. Based on the type of target architecture, it may
be required to change also the configuration file (e.g., in the case of the Alveo boards) to specify how to attach
more channels to the same CU. Finally, the host code must be updated to target the proper channel in each
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data transfer. Additionally, since we use two channels to implement double buffering, this can limit the number
of outstanding memory transactions and, in turn, the maximum number of parallel CUs. However, in case of
many channels and few CUs, Olympus (cf. Section 5.4.2) also separates input and output channels to simplify
the control logic and improve logic connectivity of the FPGA resources.

Bandwidth Optimization. In the case of large channel busses, the hardware generation flow modifies
the host code to interleave the input for the multiple elements before sending it to channels and de-interleave
the output after receiving the results. The optimization only needs information on the bus bitwidth (e.g., 256
bits for the AXI links of the Alveo) and the data type bitwidth (i.e., 32, 64, or custom bits based on the data
types). Both parameters are available from the user-supplied board specification and the compiler-supplied
array information, respectively. From this, Olympus generates the CU Read and Write functions to split and
aggregate the data into the appropriate number of lanes. The overall CU structure is then created by composing
the Read/Write functions with multiple instances of the kernels. Similarly, the data reorganization portion of
the host code can be generated with the same information by specializing the allocation functions of the host
application.

Dataflow Optimization. This optimization is enabled by the compiler generating a kernel using subfunc-
tions using streams, instead of one flat kernel function. The exact scheduling of the stages may not be straight-
forward, as the compiler has freedom to optimize the grouping for the best performance. Olympus then creates
data streams among the subkernels for data communication. In order to stream data between the subkernels,
data must be buffered when the subkernel does not operate on it in the same order that it is streamed or when
the same values are reused multiple times inside the same subfunction. In most cases, this means that data
streamed in gets stored in an internal buffer, then the data can be operated on using random access, and as
each result is computed, it is streamed out. Data structures reused across multiple blocks must be streamed
through these blocks and buffered inside them to maintain a consistent structure and avoid multiple hardware
modules accessing the same data concurrently. This optimization does not require any changes in the host
code. All optimizations are implemented as graph transformations on a connectivity graph that is extracted,
optimized, and implemented inside Olympus.

Interface Modification for Supporting Custom Precision. Using the data representation that is defined
in the previous HLS steps of EVEREST as an input, the data types are automatically changed in the imple-
mentation. Based on the HLS tools used for the kernel generation, there are different ways to specify custom
data types. For example, in the case of Xilinx Vivado/Vitis, fixed-point implementations only require a redefini-
tion of the data types before HLS using the given arbitrary-precision libraries. In the case of Bambu, custom
floating-point implementations are specified in the exchange format between the compiler and the tool, and
automatically synthesized by the tool. The conversion from/to double is generally implemented in the host
code to save hardware resources. However, this requires to adapt the data allocation functions, which receive
the input values in double but need to write fixed-point values in the FPGA buffers, and the functions to retrieve
the results that must implement the opposite conversion.

5.4 System Integration

5.4.1 Network-attached FPGAs

Besides the roofline-based DSE, the ability to interface with all different kinds of specialist frameworks via the
OSG infrastructure, linking all components together is another key ingredient for an organic compiler framework
(cf. step 7 in Figure 13). Two levels of communication must be handled: first, the communication between
different accelerator cores on one FPGA node, and second, the communication between nodes.

For intra-FPGA communication, the bandwidth of each interface is calculated, and based on this, inter-
connection FIFOs with a bit width of 64, 256, or 1024 are generated. The FIFOs are implemented via TCL
scripts. Consequently, to connect to these FIFOs, the OSGs are required to generate wrappers to connect the
individual frameworks with this standardized communication interfaces. Additionally, some frameworks may
require a different serialization of the data. We support both the two alternative cases of grouping data (pixels)
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to further serialize them. First, all pixels of one channel, e.g., three channels for RGB, are grouped together,
i.e., the tensor is transferred frame by frame. In the second case, the pixels of the same index of all channels
are grouped together. Depending on the framework, these wrappers may need to transform the tensors and
hence the resulting switching costs are taken into account during the DSE. DOSA is linking all components
together in a global HDL file. Hence, the OSGs need to emit HDL code for instantiating their accelerators and
wrappers in this HDL top module. These HDL code snippets must contain defined placeholders to replace the
interface signals with the correct input and output. After all interfaces and modules have been created, the
placeholders are replaced to connect the accelerator cores in the correct order.

For the inter-node communication, DOSA builds on the ZRLMPI framework [33, 32]. ZRLMPI is a one-click
solution for compiling, optimizing, and deploying MPI applications on heterogeneous FPGA-CPU clusters.
The framework provides FPGA cores and CPU software to synchronize FPGA and CPU nodes at run-time by
implementing a subset of the MPI standard. Please note that ZRLMPI is used here as a hardware-agnostic het-
erogeneous synchronous communication layer, not as a programming model. However, the order of messages
is important for distributed DNNs, we exploit the implicit synchronization between nodes by using the MPI_Send

and MPI_Recv features of ZRLMPI. For example, if a large convolution is partitioned vertically on two FPGAs,
the subsequent FPGA in the pipeline needs to receive the resulting activations in the correct order. Such a
situation can be observed in Figure 16 between pipeline stages 2 and 3. Therefore, DOSA instantiates the
necessary Message Passing Engines from the ZLRMPI framework and connects them to the accelerator cores
within the FPGA node by generating a lightweight wrapper core to connect the different streaming interfaces.
Additionally, this network adapter core has the communication plan of the node as table. This communication
plan is generated by DOSA and applies all parallelizations that were inserted by the DSE, i.e. horizontal and
vertical model parallelism and data parallelism. Here, also the abstraction level of the OSA helps, since the
communication pattern of the operations can be derived in a straightforward way at this IR level.

Lastly, the network streams and memory buses are connected to the corresponding interfaces offered by
the Shell of the selected target platforms (cf. [32, 29]).

5.4.2 Bus-attached FPGAs

The overall hardware architecture produced by the EVEREST system integration part is described as a block
diagram that can be later imported into the toolflow for logic synthesis and bitstream generation. This approach
allows us to integrate kernels and components generated with different flows, increasing the interoperability of
the EVEREST SDK. The kernels can be indeed generated by Vitis HLS or other HLS tools (such as Bambu
[11]), or directly described in HDL. This block diagram is generated by Olympus starting from its MLIR system-
level description using the xDSL [5] library to perform transformations on MLIR using Python.

Figure 17 – Olympus flow diagram: starting from an MLIR system level description, platform info, and kernel implementations Olympus generates an
optimized hardware architecture implemented as an FPGA bitstream and host API library.

A diagram of the overall flow is shown in Figure 17. The inputs to Olympus, shown on the left in blue are
the Olympus MLIR description of the DFG (cf. Section 4.5), the FPGA platform details (including the type and
number of FPGAs), and the kernel implementations. Olympus performs sanitation of the input, then iterates
over the Olympus-Opt analyses and transformations to optimize the final DFG. Finally, the DFG is lowered
to hardware and the output products, shown in purple on the right, are produced for both the host driver API
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(a) Original input DFG (b) Sanitized DFG (c) Sanitized input layouts

Figure 18 – Visualization of a DFG with one kernel with two input and one output channel. The original input (a) is sanitized to be with PC nodes (b) and
layouts (c) for each channel.

library and the FPGA bitstream.

Sanitize step. The first step is to sanitize the input Olympus MLIR to get a more hardware-oriented de-
scription. For example, given the input MLIR shown in Figure 18a, we use this step to derive a form that could
immediately be passed to the hardware lowering step to create the system architecture (e.g., with connections
to the FPGA memory channels). This allows the user to create the MLIR in a more convenient form without
having to add redundant details. First, layouts are created for each channel. The layout is an additional at-
tribute of the channel operators and represents the organization of the data when sent through the channel.
The layout created at this stage is simply a width of one element and a depth of the depth attribute, as shown
in Figure 18c. Additionally, olympus.pc nodes are created for each data channel connected to global memory
(i.e. not connected to kernels on both sides). These are similar to kernel operations but instead represent
the pseudochannel (PC) of global memory and are used as the terminals for data channels to main memory.
These operations have one attribute (the id of the memory channel) and one operand (the channel connected
to this PC). The direction is inferred by whether this channel is an input or output for the kernel it is connected
to. In this stage, each channel to global memory is connected to one olympus.pc node and all id attributes are
set to 0 (e.g., all virtual channels are connected to the same physical channel as this guarantees to generate
a solution that can be always implemented). After these steps, the IR can be immediately lowered to HDL and
synthesized into a working (but inefficient) design (Figure 18b).

Olympus-Opt. The next stage is an iterative series of analyses and transformations to obtain a more
optimized system architecture. In addition to the sanitized input MLIR, this stage requires the FPGA target
specification including: the number of global memory channels and their widths and the amounts of each
available resource. Additionally, a resource utilization limit (default 80%) can be given. The analyses comprise
of two main calculations. First, the target PC information and the attributes of each data channel are used to
calculate a bandwidth utilization percentage. Second, the total resource availability and the kernel resource
utilization are used to estimate an overall utilization. Using the results of these analyses, transformation passes
can be chosen to alter the DFG to increase expected performance. These transformations implement some of
the solutions proposed in Section 5.3, such as:

• Channel reassignment: Data channels connected to PC nodes and data channels of complex type are
distributed across the channels available on device to increase bandwidth utilization. Figure 19 shows
how Figure 18b would be transformed with each PC node being assigned a separate id number, to
represent a mapping onto separate physical PCs.

Figure 19 – Sample result of applying channel reassignment to Figure 18b. Each PC node has been given a different id.

• Replication: If the resource utilization is low, the entire DFG can be replicated for increased parallelism,
up to the resource utilization limit. Figure 20 shows how Figure 18b would be replicated twice. Each
operator is replicated and given a new identifier. Each replicated PC node is given the same id. Repli-
cation can gain near ideal speedup, however a high degree of replication reaching near 100% utilization
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of a resource induces routing congestion and therefore a longer critical path. Replication should be used
carefully, utilizing other optimizations for more performance.

Figure 20 – Sample result of replicating Figure 18b two times.

• Bus widening: If data widths are evenly divisible into PC widths, kernels can be replicated such that
multiple instances use the full PC. For instance, a kernel with a 64-bit data input using a 256-bit PC can
be replicated four times so each kernel’s data uses one of four lanes in the PC [39]. Figure 21 shows
how Figure 18b would be affected by bus widening for a 128-bit bus.

(a) (b)

Figure 21 – Sample result of applying bus widening to Figure 18b with a bus width of 128. Each channel has been widened by 2×, and two kernels are
instantiated. The layouts b have each data array replicated in parallel.

• Bus optimization: To increase bandwidth utilization, channels can be grouped to interleave data [40].
The Iris algorithm can split data into smaller chunks and interleave them with other arrays to compact
them on a bus with a given width. Figure 22 shows how Iris combines the a and b channels in Figure 18b
into a 128-bit bus. In the new single channel, the layout reflects the result of the Iris algorithm with the b

array broken up to achieve the most compact result. The Iris algorithm can achieve over 95% bandwidth
efficiency for a channel, compared with 4̃5% efficiency of a naive layout. Each data channel is made
twice as wide and the layout is modified to act as two “lanes”. These channels are connected to a super-
node encapsulating two kernels. When this is lowered to hardware, the data mover modules separate
the “lanes” and send the data to the correct kernels. With sufficient resource availability, this optimization
achieves near ideal speedup for the number of replications.

(a) (b)

Figure 22 – Sample result of applying the Iris algorithm to Figure 18b to combine the a and b channels on a 128-bit bus. a and b are interleaved in the
layout b of the new ab channel.

• PLM optimization: If the characteristics of the data accesses are known, the physical memories can
be shared for area efficiency [26]. Memories or interfaces can be shared based on spatial or temporal
compatibility, respectively. This information can be detected by static compiler analysis and supplied as
additional information to enable this optimization. This optimization saves on hardware resources, often
to a high enough degree to allow for additional compute unit replication and therefore speedup.

Lower to Hardware. After the Olympus-opt passes, we can effectively generate the hardware system
architecture. Channels connected to olympus.pc nodes are connected to the PCs on the device. For the
Alveos, this is configured in the *.cfg file input to the Vitis tool. Data channels with the stream type are
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instantiated as FIFOs of the specified depth. small type channels are instantiated as Private Local Memory
(PLM) in BRAMs so data can be randomly accessed, but does not need to be sent out to global memory.
These memories can be shared using Mnemosyne-generated PLM architectures. complex type channels are
connected to the device PCs so the kernels can use arbitrary pointers to access this data. Channels with
Iris-generated layouts are instantiated with adapters generated by the Iris tool to pack or unpack the data in a
way the kernels can use. For Xilinx devices, these modules are connected in a Vivado block diagram. One Vitis
HLS module is instantiated alongside the kernels to bridge the global memory and the kernels and includes the
PLMs and data moving modules. If a kernel is connected to a complex channel, this kernel has an AXI port that
connects directly to the global memory. Additionally, Olympus generates a host API library for initializing the
device, creating on-device data buffers, moving data between host and device memory, and initiating kernel
execution (cf. Section 6.1).
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6 Code Generation and Runtime Integration

Sections 3-5 describe the languages, intermediate representations, transformations and hardware generation
capabilities of the EVEREST SDK. In this section we describe how the final implementation is packaged and
deployed as a hand-over to the runtime system. As discussed in previous deliverables, the SDK can generate
pure software versions that run on CPUs. Such versions can be used by the runtime as alternative variant
if special FPGA resources are not available. In general, the compilation flow can generate multiple software
and hardware variants. In the following we describe the interfacing with the runtime and auto-tuning support
described in Deliverable D5.1.

6.1 Host Code Generation

For transparent execution, the EVEREST SDK must generate the proper part of the host code that invokes the
accelerator. This involves two parts: the compiler (which produces the parts that are still executed in software
along with the methods to invoke the accelerator) and hardware generation flow (which has information about
how the data must be rearranged based on the applied transformations). This part includes several lowering
passes.

Figure 23 – MLIR dialects used in the compiler and their dependencies between each other to obtain the host code.

Figure 23 gives an overview of the dialects we rely on for the progressive lowering of the initial representa-
tion of the graph to LLVM IR. A key aspect of the lowering, however, is that offloading is simply controlled by the
keyword offloaded during instantiation, as shown in Figure 24. This change will produce a wrapper interacting
with the Olympus driver. This offloading choice again is completely transparent and can be changed with only
the addition or removal of the offloaded keyword.

1 dfg.instantiate offloaded @mul inputs (%x_rx, %y_rx)
2 outputs (%z_sx) : (i64, i64) -> i64

Figure 24 – To mark a node as offloaded, the necessary keyword has to be added.

During system integration, Olympus generates a driver API for data movement and kernel execution. The
“Organize Data” method will pack all kernel inputs in the layout that the “Read” modules expect. The “Send
Data” method transfers this data to the device global memory. The “Start Kernel” method initiates the kernel
execution. The “Receive Data” and “Reorganize Data” methods transfer the results from global memory back
to the host and unpack them for consumption of subsequent tasks. These methods are compiled into a library
for linking into the final executable.

6.2 EVP: The Offloading Linker

Compiler solutions that enable automatic offloading on heterogeneous devices are often faced with increased
linking challenges. For programming models that mix host and device code, such as CUDA and SYCL, these
D4.5 - Final report of the compilation framework 36



http://www.everest-h2020.eu

are typically addressed with an “offloading linkage” step. Challenges include separating host and device com-
pilation units, mixing diverging ABIs (especially SYCL), and integrating device binaries into the host executable.
In EVEREST, we needed to address similar challenges, so we introduced the evp tool.

The EVEREST platform dialect evp and its associated tool with the same name perform this host/device
module instantiation. The evp dialect defines offloading primitives that will be implemented by compatible
EVEREST backends, e.g., Olympus, in the following compilation stage. The evp tool performs rewrites on the
host code such that the host/device boundaries in the dfg dataflow graph are replaced by these primitives.
evp outlines the device modules for code generation, and creates the descriptor file for the backend, which
includes the relative paths to the device compilation units. The resulting modules can then be compiled using
the default toolchain of their respective target, and their artifacts eventually linked using standard C linkage into
a complete host executable.

6.3 Bundling Variants with basecamp Climbs

As mentioned above, EVEREST basecamp is the tool to start all EVEREST endeavors, which includes the start
of each compilation and optimization flows. But additionally, after these tool flows finished, the resulting accel-
erated (parts) of the applications need to be bundled together. This includes also the combination of different
variants of the same kernel, whereas each variant is optimized for different runtime conditions.

To instantiate the runtime tuner and combine it with the available application variants, basecamp offers
the module climbs. Where one climb represents the combination of different EVEREST tools, so different
parts of the EVEREST endeavor. How the compile tool flows the and the climbs module interact is shown in
Figure 25. At the top of Figure 25, the user interacts with basecamp to trigger the compilation of her application
as described in the previous sections of this deliverable. The compilation tool flows can be invoked multiple
times to generate different accelerated variants of an application. Once all variants are generated, the user
invokes the basecamp climbs module, either via CLI or its python API. One example of using the basecamp
climbs python API is presented in Listing 2. In this example, the traffic prediction use case is accelerated using
the ML inference flow and DOSA. In the beginning of Listing 2, the user creates a new climb and then adds
all necessary files and directories for this unaccelerated (i.e. original) application to the climb. The add_file

function also needs the programming language of the files, so that the right code snippets to instantiate can
be identified. Using the copy keyword indicates to basecamp that the file does not need to be analyzed. Next,
the add_module call adds the accelerated variant generated by the basecamp compile tool flow to the climb.
This is done by using the path to the .section file generated by the basecamp compile flow, in this example by
DOSA. Finally, the complete combined application is emitted.

Back to Figure 25, it shows in the center the interaction between the different basecamp modules that
enables this automatic bundling of variants. Please note three objects: On the very right-hand side, the orange-
colored box shows the FPGA binaries with corresponding drivers and deploy scripts, which form together one
accelerated variant of the application. Then, to the left, the internal data structures between the basecamp
modules are shown in the red-colored box. To be able to allow a simple interaction for the user, as presented
in Listing 2, the compiler also needs to generate code that checks if the accelerated variant can be deployed
or executed at runtime, e.g. to check if sufficient FPGAs of the right type are available. Additionally, the
compiler needs to provide code snippets in the right programming language to instantiate the execution of the
accelerated program at runtime. Both is required to allow the runtime tuner to (i) decide which variant to deploy,
e.g. based on availability or on the real-time state and conditions of the application, and (ii) to then call the
right driver function. Sometimes, basecamp can not determine the exact parts of the original application that
should be part of the runtime tuning. For example, in the ML inference case, DOSA generates an equivalent
call for the inference function of a DNN object. However, sometimes, the software version of the ML application
needs library specific loading of weights, depending on the requested inference kernel. This loading of weights
does not need to be executed in the accelerated version, since the weights are already loaded to the FPGAs
at deployment time. Therefore, basecamp offers the option to annotate the original programs with comments
like @basecamp climbs init, @basecamp climbs accelerate begin, and @basecamp climbs accelerate end.
These annotations enables the user to indicate to basecamp the places where the initalization of the FPGA
deployment should happen (best) and which exact parts of the original programm should be replaced by the
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Figure 25 – Interaction between basecamp compilation flows and climb module for the bundling of variants.

D4.5 - Final report of the compilation framework 38



http://www.everest-h2020.eu

accelerated version. Consequently, the explicit information provided by the user combined with the internal
information of the basecamp modules allows the automatic generation and instantiation of an accelerated
application containing one or many accelerated versions.

from ebc import basecamp

e_climbs = basecamp.climbs

# first , create a new Climb

e_climbs.create('accelerated_tpred_simple ', 'tpred_integrated_v1/')

# out: Climb tpred_integrated_v1/accelerated_tpred_simple.climb created successfully.

my_climb_file = 'tpred_integrated_v1/accelerated_tpred_simple.climb '

app_dir = 'traffic_prediction/tpred_app/'

# now , we add all the files of the SW only app

# the second argument indicates the programming langauge and it indicates the right snippets of ←↩
the accelerated program to instantiate

e_climbs.add_file(app_dir + 'app.py', 'python ', my_climb_file)

e_climbs.add_file(app_dir + 'Dockerfile ', 'docker ', my_climb_file)

# 'copy' means the files are copied without modification/analysis , also directorys are copied ←↩
recursively

e_climbs.add_file(app_dir + 'client.py', 'copy', my_climb_file)

e_climbs.add_file(app_dir + 'data/', 'copy', my_climb_file)

e_climbs.add_file(app_dir + 'Readme.md', 'copy', my_climb_file)

e_climbs.add_file(app_dir + 'requirements.txt', 'copy', my_climb_file)

# now , we add the DOSA compiled files as 'variant '

# the .section file is generated by DOSA / the basecamp compile flows

e_climbs.add_module('build_dirs/etp_v1/ml_inference.section ', my_climb_file)

# finally , emit the Climb

e_climbs.emit(my_climb_file)

Listing 2 – Example interaction with the EVEREST climbs module by the example of an ML inference application.

With basecamp Climbs, the EVEREST SDK offers a solid and generic infrastructure to trigger the compilation
flows to generate, and to manage those variants to interact with an autotuner such as mARGOt. In Deliverable
D4.2 Figure 8, we showed how easy it is to get the DSL compiler to export multiple different implementations
for a given tensor expression. From EKL, in the context of the radiation module of WRF, we focused on static
optimization of the kernels and thus no variants were exported to the runtime system for the final results
reported in Deliverable D6.5. The reasons for this are two fold. First, we wanted to deploy the best performing
solution to show the potential of our DSL approach. Second, the parameters and constants were known to
the compiler so no practically relevant runtime variation was expected that would require adaptive execution of
the kernels. That said, nothing prevent further exploration of adaptive execution under more dynamic weather
scenarios and workload variations in the system. This, however, remains a matter to be addressed after the
end of the EVEREST project. For other use cases, basecamp Climbs were used to interact with the mARGOt
autotuner. This is the case of ML inference for traffic prediction (see example in Listing 2) and for managing
the HW/SW versions of the PTDR kernel in a virtualized environment.

D4.5 - Final report of the compilation framework 39



http://www.everest-h2020.eu

7 Final Assessment

In this section we provide a final assessment as to how the tools described in this deliverable fare with the
requirements defined for the language and compilers (Section 7.1), and for the hardware generation tools
(Section 7.2). This assessment relates to the EVEREST requirements described in in Deliverable D2.2 and
updated in Deliverable D2.5. The section closes with a brief positioning statement with respect to the state of
the art in Section 7.3.

7.1 Requirements: Language and Compilers

7.1.1 REQ3.1 – WRF expression abstraction

• Priority: Must have.

• Notes: Kernel support for WRF simulations. Language support for expressions in numerics (tensors,
linear algebra).

• Assessment: The abstractions of languages like cfdlang and teil were extended in the esn abstraction
to better support the WRF radiation module (see Section 3.1). These abstractions effectively fulfill this
requirement.

7.1.2 REQ3.2 – WRF Fortran integration

• Priority: Must have.

• Notes: Expression abstractions should be callable from within Fortran code. Either by annotations or
inline code modifications, user can write expressions within Fortran code for WRF.

• Assessment: The C++/Fortran interoperability was successfully test performed at start of the project,
including a non-seamless integration via text literals tested. A seamless integration with Fortran became
irrelevant for the project for two main reasons, namely, the progress of the MLIR Fortran integration and,
more importantly, the fact that an integration via the WRF module system turned out to be unavoidable
for linkage reasons.

7.1.3 REQ3.3 – ML integration

• Priority: Should have.

• Notes: Integration with machine learning frameworks. Allow importing models to hook into the code
generation process for EVEREST specific transformations.

• Assessment: The EVEREST SDK supports the community standard ONNX and pytorch (JIT) to be
synthesized to (distributed) FPGAs. Additionally, although this was not a high-priority requirement, we
implemented a prototype dialect with jabbah (see Figure 8) for frontend integration. In the middle-end,
the DOSA framework is integrated with basecamp. It can also produce the MLIR dialect for interfacing
with Olympus.

7.1.4 REQ3.4 – Streaming support

• Priority: Could have.
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• Notes: Language support for streaming workflows with highly dynamic loads. Enable compiler reasoning
for reconfiguring streaming oriented computations. Expected to support traffic use case. This require-
ment was under specified in the project, because the applicability to the use cases was not obvious.

• Assessment: While this was not explicitly tackled in the project, the Ohua/Condrust compiler does
support streaming applications [41]. At the beginning of the project we wanted to connect the frontend
with the HyperQueue task manager. Since HyperQueue is no longer needed for traffic use case, this
became irrelevant.

7.1.5 REQ3.5 – Integration with compiler frameworks

• Priority: Should have.

• Notes: For stability, reusability and extensibility, compiler work should build on top of established frame-
works (e.g., LLVM and MLIR for numerics, Haskell or alike for dataflow). By contributing to open source
frameworks, the results from EVEREST can be used by the community at large. By integrating with these
frameworks, EVEREST can reuse and extend existing methods.

• Assessment: The integration in MLIR described in Section 4 effectively fulfills this requirement.

7.1.6 REQ3.6 – Compiler transformations for kernels

• Priority: Must have.

• Notes: At the middle-end, the compiler must include a framework for transformations to manipulate
code and optimize for the EVEREST platform. For numerics, this should include affine transformations
(polyhedral) with support for stencils and other linear algebra primitives.

• Assessment: Algorithmic and polyhedral transformations were demonstrated in [14, 39], effectively
fulfilling this requirement.

7.1.7 REQ3.7 – Compiler transformations for dataflows

• Priority: Could have.

• Notes: For dataflow programs, the compiler should include semantic preserving rewrites for performance
and energy optimizations, while retaining determinism. This should extend on previous work on optimiza-
tion for dataflow programs (including mapping, graph rewrites and I/O batching).

• Assessment: The Ohua/Condrust compiler implements semantic rewrites, described in [41]. The con-
nection to more advanced energy-aware optimizations like in [16, 17] remains future work.

7.1.8 REQ3.8 – Multi-target code generation

• Priority: Must have.

• Notes: The source-to-source compiler should generate code for different targets. Code written in high-
level expression abstractions should translate to pure software (C/C++ code), or software with offloading
to accelerators (e.g., FPGA).

• Assessment: From the abstractions for kernels (Section 3.1) code can be generated automatically for
CPU and FPGA. While we have used experimental linearization as C/C++ code, MLIR allowed us to
generate code direclty via LLVM. Additionally, MLIR also enables code generation for GPU targets, which
could be used with some little additional effort. The dfg dialect include annotations for HW offloading.
The downstream tool flow from dfg and olympus allow to transparently deploy different implementations
(a pure software one or version with FPGA offloading). This requirement is thus fulfilled.
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7.1.9 REQ3.9 – Generation of tunable parameters

• Priority: Must have (for adaptable kernels).

• Notes: To enable autotuning, the compiler must produce descriptors of solutions to interface with mAR-
GOt. From high-level abstractions, the compiler should extract knobs and parameters that are key to
modifying performance and/or energy efficiency.

• Assessment: For kernels, we demonstrated the capabilities for variant generation. See for instance
variants with varying polynomial degrees in [39]. This was demonstrated in the 4th EVEREST project
webinar, “Domain specific languages for heterogeneous and emerging computing systems”. In the par-
ticular case of WRF, no adaptable kernels were recognized by the use case providers. Variants with and
without hardware acceleration can be generated for ML inference and from the dfg abstraction.

7.1.10 REQ3.10 – Interface to HLS

• Priority: Must have.

• Notes: The compiler should enable a downstream HLS flow. The compiler must export code (or an
intermediate representation thereof) to the HLS flow, including behavioral descriptions of the kernels
and configuration information for memory modules. The representation must be synthesizable (e.g., no
dynamic allocation of memory).

• Assessment: Interfacing from high-level languages to the HLS downstream flows, including Bambu and
Vivado has been demonstrated in webinars, in [39, 14, 13, 31, 28], and discussed in Deliverable D4.2.
This requirement is thus fulfilled.

7.1.11 REQ3.11 – cFDK/OC-Accel software integration and language compatibil-

ity

• Priority: Must have.

• Notes: The software should be compatible with the cFDK/OC-Accel API. The software part of the kernels
that are being mapped to the FPGA should be built in a way that allows the seamless integration with
the API specifications of cFDK (e.g. C/C++/Python sockets) and/or OC-Accel frameworks (e.g. C/C++/li-
bocxl).

• Assessment: The DOSA flow supports the cFDK API completely (see Section 4.7.2). Support down-
stream from the olympus abstraction is in progress and will be finished by the project’s end. The EVER-
EST SDK offers tools to accelerate key HPC and ML kernels by offloading them to high-performance
FPGAs. While the bandwidth between the HPC compute nodes and on the bus-interfaces between the
CPU and the FPGA-accelerators within the compute nodes is important, the ability to coherently access
address memory across the CPU and accelerator complex was not identified as an important element
during the analysis of the use-cases. Furthermore, the OpenCAPI interface, which we were planning to
use to link the FPGAs to the CPUs did not achieve the wide-spread adoption we were expecting at the
time of the writing of the proposal. Therefore, we chose to implement the FPGA-accelerated HPC sys-
tem that will be used to demonstrate acceleration of the weather codes based on standard PCIe-attached
FPGA-accelerator cards (Xilinx Alveo). This approach will naturally extend to CXL-attached accelerators,
which rapidly gain adoption across the industry (cf. Deliverable D6.2).

7.1.12 REQ3.12 – Reasoning about heterogeneous applications

• Priority: Must have.
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• Notes: Compiler optimizations must consider offloaded kernels. The source to source compiler must
differentiate between offloaded and host functions to apply parallelizing transformations to host code
only.

• Assessment: For applications fully described using the abstractions of the SDK (ML, EKL and Ohua/dfg),
the tool flow modifies the code on the host to implement different parallelization schemes. A good exam-
ple of this can be seen in [39]. Similarly, also the developed Operating Set Architecture used by DOSA
optimizes the implementation of operations that can not be offloaded to an accelerator [28, 31]. In the
particular case of WRF, the Fortran code around the extracted kernels is not modified as moving the
entire legacy RRTMG implementation into DSL was out of scope.

7.1.13 REQ3.13 – Glue code generation for heterogeneous applications

• Priority: Should have.

• Notes: Generate interfacing code for offloaded kernels. The source to source compiler must generate
code that allows the interfacing between host and accelerator.

• Assessment: olympus and evp dialects generate the glue code, effectively fulfilling this requirement.

7.1.14 REQ3.14 – Abstractions for offloaded kernels

• Priority: Should have.

• Notes: Provide abstractions for marking a kernel as to-be-offloaded in a high-level algorithm. The high-
level dataflow language provides abstractions for marking offloaded kernels, easing development of the
application.

• Assessment: The syntax extension described in Section 3.3 and Section 4.3 fulfills this requirement.

7.2 Requirements: HLS and Memory Design

7.2.1 REQ4.1 – C/C++ support

• Priority: Must have.

• Notes: C/C++ support for HLS of descriptions coming from DSL compiler. The HLS tool should support
C/C++ code from the use case applications.

• Assessment: Bambu provides full coverage of the C/C++ constructs employed in the use case applica-
tions, as described in Deliverable D4.6, Section 2.5. The requirement is thus fulfilled.

7.2.2 REQ4.2 – Bambu LLVM IR support

• Priority: Must have.

• Notes: Low-level integration with DSL compiler. The HLS tool should support a version of LLVM consis-
tent with the one used by the DSL compiler.

• Assessment: Bambu currently supports up to LLVM 16, which is compatible with the version used by the
DSL compiler. The requirement is thus fulfilled.
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7.2.3 REQ4.3 – Bambu MLIR dialect support

• Priority: Can have.

• Notes: Direct synthesis from MLIR dialects. It may improve the final performance raising the abstraction
level. At least, it should support integration with the affine dialect.

• Assessment: Bambu can synthesize MLIR code lowered and translated to LLVM IR in the frontend. The
requirement is thus fulfilled.

7.2.4 REQ4.4 – HLS Verilog output

• Priority: Must have.

• Notes: HLS generates RTL Verilog code as output. The Verilog code must be synthesizable with the
EVEREST backend flow.

• Assessment: The EVEREST backend flow for Verilog kernels is currently logic synthesis and implemen-
tation with the Xilinx toolchain, which is fully compatible with Bambu. The requirement is thus fulfilled.

7.2.5 REQ4.5 – HLS VHDL output

• Priority: Should have.

• Notes: HLS generates RTL VHDL code as output. The VHDL code must be synthesizable with the
EVEREST backend flow.

• Assessment: The EVEREST backend flow for VHDL kernels is currently logic synthesis and implemen-
tation with the Xilinx toolchain, which is fully compatible with Bambu. The requirement is thus fulfilled.

7.2.6 REQ4.6 – Top function specification

• Priority: Must have.

• Notes: The code to be synthesized must be in a stand-alone function that must be specified. The top
function could be specified as an annotation to the code, command line parameter, or option files.

• Assessment: Bambu synthesizes a kernel starting from a user-defined top function, as described in
Deliverable D4.6, Section 2.5. The requirement is thus fulfilled.

7.2.7 REQ4.7 – Block level/Top component interfaces

• Priority: Must have.

• Notes: The protocol to interface with the top module has to be specified. The start, done, etc. protocol
of the top component has to be defined and compatible with the EVEREST platform.

• Assessment: The protocol for control signals has been defined, expected signals are clock, reset,
start_port (inputs) and done_port (output). Bambu correctly generates such signals and Olympus gen-
erates their drivers. The requirement is thus fulfilled.
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7.2.8 REQ4.8 – Port-Level interfaces

• Priority: Must have.

• Notes: I/O interface protocols added to the individual function arguments. The definition of the protocol
should be defined through code annotations.

• Assessment: The protocol to access function arguments can be specified through pragma annotations
or an XML file, as described in Deliverable D4.6, Section 2.5. The requirement is thus fulfilled.

7.2.9 REQ4.9 – Bambu Vivado HLS I/O interface interoperability

• Priority: Can have.

• Notes: Annotations specifying the I/O protocols interface compatibility. Block/port level interfaces should
use the same annotations used by Vivado HLS.

• Assessment: Protocols and pragma annotations are fully compatible with the ones used by Vivado
HLS. The implementation of the array and m_axi interfaces correspond to the Vitis HLS BRAM and
AXIm interfaces, respectively. The requirement is thus fulfilled.

7.2.10 REQ4.10 – Technology options specification

• Priority: Must have.

• Notes: The HLS tool accepts inputs for optimization, clock constraint and resource constraints. These
technology constraints will passed as input options.

• Assessment: Bambu exposes options that allow the user to select the target FPGA, clock period, and
optimization level, as described in Deliverable D4.6, Section 2.5. The requirement is thus fulfilled.

7.2.11 REQ4.11 – Bambu Data flow annotations

• Priority: Should have.

• Notes: HLS Data flow support. Dataflow style applications could be specified by code annotations.

• Assessment: Only a preliminary design has been defined for the support of dataflow applications in
Bambu.

7.2.12 REQ4.12 – Bambu OpenMP support

• Priority: Can have.

• Notes: OpenMP for pragma synthesis support. The body of OpenMP parallel loop needs to be in a
separate function.

• Assessment: Only a preliminary implementation has been defined for the support of OpenMP applica-
tions in Bambu.
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7.2.13 REQ4.13 – Bambu floating point precision

• Priority: Can have.

• Notes: Floating point variables may use a custom floating precision data type. Allow optimizations of
scientific and machine learning kernels.

• Assessment: Bambu supports the customization of floating-point formats through the TrueFloat library,
as described in Section 5.1.2. The requirement is thus fulfilled.

7.2.14 REQ4.14 – cFDK/OC-Accel top component interface

• Priority: Must have.

• Notes: Interface definition of the top component being integrated with cFDK/OC-Accel frameworks. The
top-level component of the functionality that will be mapped to the FPGA must be compatible with the
cFDK ROLE interface (AXIlite, AXIs, AXIm) and/or OC-Accel Action interface (AXIlite, AXIm).

• Assessment: The AXIm protocol is fully supported by Bambu, while AXIlite and AXIs will be integrated in
the future. Since the project reacted to market developments, we integrated with the Alveo Shells instead
of OC-Accel (cf. REQ3.11). Here, Olympus and Bambu fully integrate the required interfaces. Integration
with cFDK/OC-Accel has been defined and partially automated.

7.2.15 REQ4.15 – Memory interfaces

• Priority: Must have.

• Notes: Standard interfaces for memory accesses. The HLS-generated kernels and the memory modules
should have a common interface format.

• Assessment: Olympus successfully integrates accelerators generated by Bambu with memories and
other communication modules.

7.2.16 REQ4.16 – Software-level support

• Priority: Must have.

• Notes: Software code to interface with the accelerators. The accelerators should be invoked with custom
OS drivers.

• Assessment: Olympus generates an API library for invoking the kernel using the underlying platform
drivers. This library can be linked to the host executable. Manual process tested via PTDR, automation
in progress.

7.2.17 REQ4.17 – Hardware/software data sharing

• Priority: Must have.

• Notes: Data allocation must be compatible with hardware memory interfaces. The software-level data
allocation should be performed in a way that hardware can access the data.

• Assessment: Kernel source code must use ETL or primitive data types. Olympus and Bambu under-
stand these types and Olympus’ host API library can organize them for correct kernel access. Manually
tested via PTDR, automation in progress.
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7.3 Advancing the State-of-the-art

Advances with respect to the state of the art have been demonstrated in the several publications cited in this
deliverable. Major highlights are summarized in the following:

• High-level programming abstractions: EVEREST contributed to (implicit) stateful dataflow programming [41]
and to tensor DSLs. The latter is an evolution of cfdlang [36] and TeIL [35] which, as opposed to many
other tensor DSLs, include a formal semantic specification with provable properties. The extensions
described in Section 3.1, Section 4.2 and Section 4.1 advance the state of the art with subscripted sub-
scripts and seamless integration of custom data representations (compared to linalg) via base2 [13]
(compared to tosa).

• Weather modeling: Improving and accelerating the large legacy code base at the core of today’s weather
and climate models is the matter of plenty of efforts and is known to be extremely hard. There are two
lines of research when it comes to acceleration and improved scaling of weather and climate codes on
modern, heterogeneous hardware. The first approach is to re-compile the legacy code base predomi-
nantly written in Fortran for, e.g., modern GPU accelerated backends (https://www.research-collection.
ethz.ch/handle/20.500.11850/644620), but this approach has inherent limitations because the low-level
Fortran code does – in many cases – not expose the high-level data and control structure required to opti-
mize code for modern hardware. The second approach focuses on building parts or the complete models
from scratch with DSLs (https://www.pasc-ch.org/projects/2021-2024/kilos/index.html, https://gmd.coper-
nicus.org/articles/16/2719/2023/) and developing new compilers which can target heterogeneous hard-
ware backends, e.g., the Open Earth Compiler [15], GridTools [2], and GT4Py [23]. In EVEREST, with
considerable effort, we showed that it is possible to gradually inject DSL expressions into the complex
existing WRF code base. We tackle the radiation module, which experts acknowledge as one of the most
challenging code bases. Our implementation can also be used from more modern initiatives such as
ecRAD2. Apart from integrating into WRF, we also address the challenge of deploying components into
accelerators on FPGA.

• MLIR ecosystem: We have actively contributed to the MLIR community, leading to upstreaming efforts
(ub and base2 from Figure 8) and uptake by project partners. We also proposed a novel approach to
handle dependent types in MLIR to support the language extensions for tensors (see Section 3.1). In the
area of dialects for FPGA design, we propose the simple, yet effective, dataflow dfg dialect that offers
a higher-level abstraction to reason about resource sharing (compared to CIRCT https://github.com/

llvm/circt). It offers a transparent, vendor-independent device model (vs. Noctua, ESSPER [38]).

• HLS and system-level design: EVEREST builds on top of established HLS tools (Bambu, Vivado/Vitis
HLS) to introduce new methodologies (Section 5.1) and advanced system design features (Section 5.3
and Section 5.4). The introduction of MLIR-based loop pipelining [7] stems from a collaboration with the
SODA project [4], and the code has also been integrated into the soda-opt repository. Unlike soda-opt

and ScaleHLS [48], which only present simulation results, in EVEREST, we can deploy HLS kernels on
actual FPGA boards, identifying bottlenecks that only arise when the kernel is integrated with High Band-
width Memory (HBM) memory and a host controller. Olympus alleviates such bottlenecks by introducing
dedicated optimizations. Also, Olympus automates several optimizations that, currently, must be man-
ually introduced in FPGA architectures as block diagrams or code rewritings. For this reason, this tool
is intended to complement (and not replace) commercial frameworks for FPGA design, like AMD Vitis.
In conclusion, we can consider the hardware generation flow as an extension towards higher levels of
abstraction of the current FPGA design methods.

• Inference on FPGAs: One of our main goals is lowering the barrier for the deployment of FPGAs by
non-FPGA experts. DOSA has a simple command line interface to automatically compile, build and
deploy a DNN on a heterogeneous, distributed cluster. Due to the roofline, bandwidth, parameter, and
device-compatibility analysis of DOSA, the scheduling and partitioning is possible completely without any
involvement of the user. Alternative frameworks like FINN or VitisAI require the user to program in Python,

2https://www.ecmwf.int/en/elibrary/79850-ecrad-new-radiation-scheme-ifs
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C++, and HLS to adapt the accelerator to the users needs. Hence, without DOSA, a user who wants to
deploy such a DNN is required to manually identify which part is supported by which framework, partition
the DNN, generate the partial designs, and depending on the framework write the necessary glue logic
manually. DOSA automates this completely and creates required build and deploy scripts. Furthermore,
DOSA supports the very popular community standard ONNX. In summary, DOSA significantly improves
the user’s productivity and offers better coverage of ONNX than comparable frameworks. For further
details, please refer to [28].
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8 Conclusions

In this deliverable we described the final status of the compilation framework. Apart from minor adaptations,
expected given the challenging goals of the EVEREST project, the framework follows the design from De-
liverable D4.1. We explained how we achieved convergence of abstractions, with several key intermediate
languages as described in Figure 8, which was one of the key goals of the EVEREST SDK. We believe that
these abstractions, the transformations and lowerings, and the connection to system-architecture exploration
can serve to build more complex tool flows in the future. Leveraging the MLIR infrastructure, users of the SDK
can now connect different frontends (similar to the ONNX import for other DSLs) or implement lowerings to
other target systems (e.g. to GPUs or the recent AMD AI engines).

Compared to the intermediate report in Deliverable D4.2, this deliverable describe several new additions to
the SDK, including, (1) extended language support, e.g., for subscript expressions required for the radiation
module of WRF, (2) an end-to-end dataflow programming with annotations for off-loading supported by a rich
type system, (3) an end-to-end ML flow based on operation set architectures for distributed execution of large
models across FPGAs, (4) a system integration flow that leverages MLIR-based transformations to create the
overall hardware system and the corresponding driver API, (5) a clean interface via basecamp to access the
tools and wrap the implementations into deployable climbs for the runtime system. Details on the commands
to access the tools are provided in Deliverable D4.6. The transformations and optimizations, demonstrated
in Deliverable D4.2 based on data policies identified in Deliverable D3.1, represent a solid basis for perfor-
mance engineers and for extensions after project end. The role the tools play in the use cases is described in
Deliverable D6.3, with evaluation results in Deliverable D6.5.

As detailed in Section 7, overall, the work described in this and related deliverables fulfills to a great extent
the requirements of the project described in Deliverable D2.2 and refined Deliverable D2.5.
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Acronyms

ABI Application Binary Interface. 12, 13, 49

API Application Programming Interface. 7, 37, 42, 49

AST Abstract Syntax Tree. 13, 16, 49

CFD Computational Fluid Dynamics. 9, 11, 49

CKD Correlated K-Distribution. 11, 13, 49

CLI command line interface. 7, 9, 37, 49

CU Computational Unit. 30, 31, 49

DFG Dataflow Graph. 13, 32, 33, 49

DNN Deep Neuronal Networks. 22, 37, 49

DSE Domain-Space Exploration. 16, 24, 49

DSL Domain-Specific Language. 6, 7, 9, 11–13, 15, 39, 47, 49

EKL EVEREST Kernel Language. 11, 12, 16, 49

ESN Einstein Summation Notation. 11, 16, 17, 49

FFI Foreign Function Interface. 12, 13, 49

FPGA Field Programmable Gate Array. 4, 7, 10, 13, 14, 26, 27, 30–32, 36, 37, 41, 42, 47, 49

GEMM general matrix-matrix multiply. 49

GPU graphical processing unit. 21, 23, 41, 49
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