
http://www.everest-h2020.eu

dEsign enVironmEnt foR Extreme-Scale big data
analyTics on heterogeneous platforms

D3.2 — Data management techniques: final
version

The EVEREST project has received funding from the European Union’s
Horizon 2020 Research & Innovation programme under grant agreement
No 957269



http://www.everest-h2020.eu

Project Summary Information

Project Title dEsign enVironmEnt foR Extreme-Scale big data analyTics on heterogeneous
platforms

Project Acronym EVEREST

Project No. 957269

Start Date 01/10/2020

Project Duration 42 months

Project Website http://www.everest-h2020.eu

Copyright
© Copyright by the EVEREST consortium, 2020.

This document contains material that is copyright of EVEREST consortium members and the Euro-
pean Commission, and may not be reproduced or copied without permission.

Num. Partner Name Short Name Country
1 (Coord.) IBM RESEARCH GMBH IBM CH

2 POLITECNICO DI MILANO PDM IT

3 UNIVERSITÀ DELLA SVIZZERA ITALIANA USI CH

4 TECHNISCHE UNIVERSITAET DRESDEN TUD DE

5 Centro Internazionale in Monitoraggio Ambientale -
Fondazione CIMA CIMA IT

6 IT4Innovations, VSB – Technical University of Ostrava IT4I CZ

7 VIRTUAL OPEN SYSTEMS SAS VOS FR

8 DUFERCO ENERGIA SPA DUF IT

9 NUMTECH NUM FR

10 SYGIC AS SYG SK

Project Coordinator: Christoph Hagleitner – IBM Research – Zurich Research Laboratory

Scientific Coordinator: Christian Pilato – Politecnico di Milano

The technology disclosed herein may be protected by one or more patents, copyrights, trademarks
and/or trade secrets owned by or licensed to EVEREST partners. The partners reserve all rights with
respect to such technology and related materials. Any use of the protected technology and related
material beyond the terms of the License without the prior written consent of EVEREST is prohibited.

Disclaimer
The content of the publication herein is the sole responsibility of the publishers and it does not nec-
essarily represent the views expressed by the European Commission or its services. Except as
otherwise expressly provided, the information in this document is provided by EVEREST members
"as is" without warranty of any kind, expressed, implied or statutory, including but not limited to any
implied warranties of merchantability, fitness for a particular purpose and no infringement of third
party’s rights. EVEREST shall not be liable for any direct, indirect, incidental, special or consequen-
tial damages of any kind or nature whatsoever (including, without limitation, any damages arising
from loss of use or lost business, revenue, profits, data or goodwill) arising in connection with any
infringement claims by third parties or the specification, whether in an action in contract, tort, strict
liability, negligence, or any other theory, even if advised of the possibility of such damages.

D3.2 - Data management techniques: final version 2



http://www.everest-h2020.eu

Deliverable Information
Work-package WP3

Deliverable No. D3.2

Deliverable Title Data management techniques: final version

Lead Beneficiary USI

Type of Deliverable Report

Dissemination Level Public

Due Date 31/01/2024

Document Information
Delivery Date 27/06/2024

No. pages 46

Version | Status 1.1 | Revised

Responsible Person Francesco Regazzoni (USI)

Authors

Francesco Regazzoni, Tom Slooff, Subhadeep Banik, Alberto Ferrante (USI), Jan
Martinovic, Jakub Beranek, Katerina Slaninova (IT4I), Karl Friebel, Jeronimo
Castrillon (TUD), Serena Cruzel, Christian Pilato (PDM), Michele Paolino,
Samuele Paone (VOS), Burkhard Johannes Ringlein (IBM)

Internal Reviewer Christoph Hagleitner (IBM)

The list of authors reflects the major contributors to the activity described in the document. All EVEREST
partners have agreed to the full publication of this document. The list of authors does not imply any claim of
ownership on the Intellectual Properties described in this document.

Revision History
Date Ver. Author(s) Summary of main changes

13.10.2023 0.1 Tom Slooff (USI) Initial draft

3.12.2023 0.2 Tom Slooff (USI) Updated Anomaly Detection

13.1.2024 0.3 Michele Paolino and
Samuele Paone (VOS) Updated Virtualization

9.02.2024 0.4 Burkhard Ringlein
(IBM) Updated Cloud FPGA communication

28.02.2024 0.5 Serena Cruzel (PDM) Updated Custom Data Type

28.02.2024 0.6 Subhadeep Banik
(USI) Added Security Library

7.03.2024 0.6

Jan Martinovic and
Jakub Beranek and
Katerina Slaninova
(IT4I)

Updated Data Management Architecture

15.03.2023 0.7 Francesco Regazzoni
Alberto Ferrante (USI) Assembly

23.03.2024 0.8 Christoph Hagleitner
(IBM) Review

26.03.2024 1.0 Christoph Hagleitner
(IBM) Final

D3.2 - Data management techniques: final version 3



http://www.everest-h2020.eu

Date Ver. Author(s) Summary of main changes

26.06.2024 1.1

Francesco Regazzoni
Tom Slooff (USI)
Michele Paolino (VOS)
Jan Martinovic (IT4I)
Christian Pilato (PDM)
Christoph Hagleitner
(IBM)

Revision

Quality Control

Approved by Internal Reviewer March 25, 2024
Approved by WP Leader (N.A.)
Approved by Scientific
Coordinator March 26, 2024

Approved by Project
Coordinator March 26, 2024

D3.2 - Data management techniques: final version 4



http://www.everest-h2020.eu

Table of Contents

1 Executive Summary 6

2 Introduction 7

3 Data Management Techniques 9
3.1 Data Allocation and Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.1 Memory-related optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.2 Storage of Data at Cluster Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Data Processing and Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.1 VMs guests-host (PCIe virtualization) communication extensions . . . . . . . . . 13
3.2.2 Data management techniques for the cloudFPGA platform . . . . . . . . . . . . 13
3.2.3 Data management techniques for Xilinx Alveo accelerators . . . . . . . . . . . . 15
3.2.4 HLS data management techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.5 Inter-Node and Inter-Cluster communication . . . . . . . . . . . . . . . . . . . . . 26

3.3 Data Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.1 Anomaly Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Cryptographic Libraries for Data Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5 Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5.1 Cryptographic Primitives: Block Ciphers . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.5.2 Cryptographic Primitives: Stream Ciphers . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5.3 Cryptographic Primitives: Authenticated Encryption . . . . . . . . . . . . . . . . . 33

4 Conclusion 41

References 43

D3.2 - Data management techniques: final version 5



http://www.everest-h2020.eu

1 Executive Summary

This deliverable reports the final version of the Data Management Techniques (DMTs) studied, developed, and
adopted within the EVEREST project. It depicts the definition of techniques related to data layout, communica-
tion, and security. This deliverable is an updated version of Deliverable D3.1 “Data management techniques:
initial version”, and extends this initial version of the DMTs by presenting the optimization, the changes, and the
novel techniques that have been developed in the second part of the project. Since our goal is to provide a self
contained document that does not require prior knowledge of the content of Deliverable D3.1 to be completely
understood. While preparing this deliverable we followed an incremental approach. This means that we started
the current deliverable from the text, the figures, and the tables that were already part of Deliverable D3.1. We
updated content in this deliverable where needed, but left it unchanged where it was still valid. Next, we added
new sections, figures and tables to describe the new results and methods developed in the second part of the
project.

We followed the same structure of Deliverable D3.1, describing firstly the general position of the DMTs
within the EVEREST data-lifetime explaining the difference between the data management techniques de-
scribe in this deliverable and the initial data management plan described in D1.3. Then we present, at high
level, the final version of the EVEREST data management architecture, which has been updated compared to
Deliverable D3.1. Finally, we summarize the efforts done throughout the project discussing the DMTs devel-
oped for the FPGA memory architecture, for data allocation and storage, for the FPGA data processing, for
virtualization, for custom data types and for providing data protection via anomaly detection and via a library of
cryptographic primitives.

D3.2 - Data management techniques: final version 6



http://www.everest-h2020.eu

2 Introduction

This deliverable presents the final version of the DMTs, whose initial version was provided in deliverable D3.1.
The goal of the EVEREST project is to establish the convergence between big data and HPC, focusing on
a data-centric perspective and considering software tools that go beyond the border of a single hardware
platform. In this deliverable, we focus on the DMTs that deal with the data needed for the execution of an
EVEREST workflow.

The initial high level vision of the Data Management Architecture has been refined throughout the course of
the project. The updated version of the architecture is depicted in Figure 1. We can see the categorization of
the data management process into five tiers. The data management requirements of each tier are addressed
by different tools and technologies suitable for the purpose.

Figure 1 – The EVEREST Data Management Architecture (EDMA)

The first tier is used for the definition of the EVEREST high-level application complex workflows. Tasks
in these workflows are already deployed HPC applications, containerized applications, data movement opera-
tions, etc. The workflows on this tier are represented by directed acyclic graphs (DAG) implemented in Python
and orchestrated by the Apache Airflow [6] using custom operators implemented as a comprehensive library
which is part of the LEXIS Platform [38, 39].

The LEXIS Platform implements the concept of a workflow, which executes a particular DAG. This execution
accepts a set of input parameters, and the individual tasks are triggered according to their dependencies
defined in the DAG file. In the second tier, Apache Airflow ensures the correct ordering of task executions,
which triggers appropriate APIs for asynchronous data and HPC job management (using HEAppE middleware
[37]) and implements a mechanism for observing state changes of the operations.

The third tier includes the data management within the tightly coupled processing units of the EVEREST
platform, i.e., CPUs and FPGAs (PCIe-attached and network-attached). The fourth tier includes the data
management at the boundaries of the processing elements and the external fast memory, i.e., Double Data
Rate (DDR) and High Bandwidth Memory (HBM). The fifth tier includes the data management at an optional
ephemeral SSD-based storage within the boundaries of an EVEREST node.

Persistent storage is provided by persistent file systems or by object stores of the LEXIS Platform Distributed
Data Interface (see Section 3.1.2). As it can be seen, EVEREST applications span over all the tiers. This
architecture offers to users of EVEREST the possibility to develop applications in a way that is transparent to
the actual physical platform where the workflow will be executed.

In the remaining part of this section, we recall the whole EVEREST data-lifetime cycle, which is depicted in

D3.2 - Data management techniques: final version 7



http://www.everest-h2020.eu

Figure 2. The figure reports three main categories for the EVEREST Data Lifetime:

• Data gathering: The process of collecting data from various sources to process in the following stage.

• Experimentation: The main process of performing calculation on data to derive useful insights for the
EVEREST applications.

• Data sharing: The process of offering the results of the previous stage to other interested parties, either
in a confidential, open-access policy or as an input to the gathering stage in the form of a feedback loop
(reintegration).

Using the categories identified in the figure, the activities presented in this deliverable are positioned mostly
on the data during the experimentation phase.

Figure 2 – The EVEREST data-lifetime, data gathering and sharing are mostly covered in deliverable D1.4, this deliverable D3.2 addresses the data
management techniques used for experimentation.

D3.2 - Data management techniques: final version 8



http://www.everest-h2020.eu

3 Data Management Techniques

The DMTs reported in this section describe the methodologies and tools that have been developed and used
during the whole EVEREST project. Several techniques envisioned, used, and developed in the first part of
the project and described in Deliverable D3.1 have been maintained and confirmed also in the second part of
the project, thus their description remain unchanged.

A key enabler for DMTs within the EVEREST project is the use of domain-specific programming abstrac-
tions. These programming abstractions convey information to the compilation and optimization flow about
data-centric operations. To support the different use cases, we developed and leveraged abstractions for
data structures (e.g., tensors in CFDlang and Machine Learning), for known operators (e.g., tensor contrac-
tions, stencils and convolutions), and for explicit typed data communication in the Ohua dataflow programming
model. These data abstractions ensure a seamless integration in the high-level transformations and in the
code generator. More concretely,

• Data structures: With index-free DSLs, the compiler has full control on the data layout and materialization
of multi-dimensional arrays. This allows for high-level data partitioning, for advanced polyhedral analysis
and scheduling, and for buffering optimizations. Via annotations, the user can specify custom data types,
further reducing the memory footprint of data structures and allowing for trade-off exploration between
memory bandwidth and area in the reconfigurable fabric.

• Known operators: With explicit syntax for operators, the compiler has rich information about memory
access patterns. We thus capture high-level stencils, tensor operators and machine learning kernels.
By abstractly specifying a stencil, the compiler can decide on the interplay between data allocation,
buffering, re-computation and stencil scheduling. With known tensor operators, like contraction or tensor
products, the compiler can decide on the most suitable implementation via algebraic transformations
(e.g., sequence of transpositions followed by matrix-matrix multiplication). By capturing the structure
of a deep neural network, the compilation flow can decide on how to implement ML engines in the
reconfigurable hardware (e.g., streaming or batching).

• Dataflow: Typed dataflow channels, makes it easier to offload computation to accelerated kernels in
FPGAs. This includes transparent data marshalling.

These data-centric abstractions are accessible through DSLs and are represented within the EVEREST
compiler with suitable intermediate representations (see Deliverable D4.2 and Deliverable D4.5). Compared
to what we reported in Deliverable D3.1, extensions to the programming abstractions to provide better control
on data abstraction are: (1) a complete Einstein Summation Notation for tensor expressions, and (2) a formal
abstraction of dataflow with explicit control of accesses (read and write) to data channels. The former includes
support for indirect accesses via subscripts of subscripts, which provide better control on data access patterns.
The latter enable better type-safe analysis as enabler for the memory-related optimizations mentioned below.

3.1 Data Allocation and Storage

In EVEREST, we apply several memory-related optimizations to reduce the resource requirements (to possibly
fit in more parallel computational units) or to facilitate optimizations of the computational part.

Figure 3 shows the hardware architecture common to the accelerators generated by the EVEREST SDK.
In the FPGA side, a computational unit (CU)1 is replicated one or more times based on the available logic
resources and memory channels.

To optimize the use of on-chip memories (1), we apply memory sharing to reduce the Block Random Ac-
cess Memory (BRAM) requirements of each kernel generated with HLS. To this end, we exploit the information
on the data and the interfaces computed by the compiler during liveness analysis. Based on this, it applies

1We use the Xilinx terminology of “Computational Unit” to refer to the largest unit of computation that can be generated by the
compilation flow and possibly replicated into the final hardware architecture to parallelize data processing.

D3.2 - Data management techniques: final version 9



http://www.everest-h2020.eu

Figure 3 – FPGA memory architectures of the EVEREST accelerators.

sharing transformations based on a memory compatibility graph, which we can easily compute from the com-
piler for any given schedule. Our memory generation flow then uses this information to generate zero-conflict
memory architectures while guaranteeing fixed latency of the memory accesses. It can also create multi-port,
multi-bank architectures based on the requested HLS optimizations. In this way, the HLS tool can compute a
more efficient scheduling of the computational part.

Our hardware generation flow aims at optimizing the data transfers around the kernel implementation pro-
duced by the compiler flow. In particular, EVEREST aims at generating hardware accelerators and the associ-
ated memory architectures like the one shown in Figure 3.

In this phase, we apply different optimizations on the data allocation to facilitate hardware execution, such
as:

• Double buffering: To overlap the host-FPGA data transfers with the execution of the hardware module,
we use double buffering (2) that requires the allocation of consecutive data chucks to different memory
regions that can be transmitted independently.

• Memory layout reorganization: In the case of large bus lines (e.g., the 256-bit Advanced eXtensible
Interface (AXI) interfaces of the PCIe-attached memory architectures) or custom data types with reduced
bitwidths, EVEREST uses bandwidth optimization (3) methods to better exploit the available bandwidth
and reduce the number of clock cycles for data transfers. To fully exploit the parallelism, we conceptually
divide the bus into smaller and parallel lanes that can be accessed independently by the parallel kernels.
Algorithms for better data layouts have been also proposed to maximize the bandwidth utilization. To
obtain this layout, the host code data allocation must be modified to interleave the input for the multiple
elements before sending it to the FPGA and de-interleave the output after receiving the results.

• Custom precision floating-point: Where full precision is not required power consumption and data-
transfer/computation latency can benefit from the use of smaller bitwidth floating-point types (4), while
preserving results’ precision.

All these optimizations affect the allocation of data in memory and so are implemented in the customization
of the host functions (see Deliverable D4.4 for more details). These optimizations apply to the use of the
on-chip memories and the data layout in off-chip memories.

For the memory aspects of a hardware accelerator, EVEREST proposes an approach based on a mem-
ory template that allows for the specialization of the components. The template comprises existing memory
primitives, like caches, Direct Memory Access (DMA) engines, prefetchers, and private-local memories (multi-
port on-chip memories with fixed-latency access). Based on given area constraints, only part of the data can
D3.2 - Data management techniques: final version 10



http://www.everest-h2020.eu

stay on chip, while the rest is stored in DRAM (either on the same device or in another that can be accessed
through via inter-node data transfers). On-chip data are stored in different memories based on the application
data structures but also the type of accesses that are expected. Irregular accesses are implemented with
custom latency-insensitive memory architectures [47].

Data with regular accesses can be stored in fixed-latency private local memories (PLMs) and customized
with multi-bank configurations to expose many ports to the accelerator logic. Data reuse buffers can remove
unnecessary data transfers. Data accesses with a certain degree of locality can benefit from architectures
featuring caches that are local or shared with the processor by means of a coherent protocol. We also feature
a DMA engine to make the data transfers more efficient and we can introduce prefetchers to anticipate
known data transfers to hide the communication latency. These IP blocks can be also special functions that
can include security modules (e.g., encryption/decryption engines) or application-specific transformations (e.g.,
synthesizable matrix transpose for near-data computing).

This template is general enough to be reused across many kernels, but it can also be specialized based on
the accelerator characteristics. For instance, we can vary the number of ports on a multi-bank memory based
on the specific access patterns of the given application kernels. Also, components can be removed if they are
unnecessary. For example, if the data resides entirely on-chip, the prefetcher can be removed or if there is only
a single memory, the multi-channel controller can be simplified. On the contrary, for both network-attached and
PCIe-attached FPGAs, the support for multiple channels is important to exploit the bandwidth and supply the
parallel execution of the hardware resources with enough data.

3.1.1 Memory-related optimizations

In the following, we describe data optimizations that we include in EVEREST. Such optimizations can be
extended to many big data applications that make large use of tensor operators.

On-Chip Memory Optimization. The tensor-based kernels can be often decomposed into a sequence of
loops that are executed in sequence. Each loop produces a tensor. Intermediate tensors are used by the next
loops. Each of these matrices requires on-chip resources (generally BRAM) to store the values. The number
of available BRAMs can limit the number of FPGA kernels. However, once the matrix is not used anymore,
the corresponding BRAM resources can be used by the same kernel to store new data. Using the liveness
information generated by the compiler, we can reduce the number of on-chip resources required by each kernel.
Indeed, arrays with disjoint lifetimes can use the same physical memory banks. Reducing the kernel’s BRAM
requirements can increase the total number of kernels that we can instantiate. However, sharing opportunities
can operate only inside each subkernel. So, the effects of this optimization may be limited.

Host-FPGA Double Buffering. In a naive implementation, the host code transfers the data required for
computation into the FPGA. The Compute Units (CU) are then called upon to execute on each of these ele-
ments and generate the corresponding output results. The host transfers these outputs back from HBM to its
main memory. Each CU interfaces with one PC and we can instantiate up to 32 CUs (each with one kernel)
to operate in parallel. However, all communication and execution for a single CUs are serialized. Since the
host-HBM communication as much expensive as the computational part, this significantly affects the overall
performance. To overlap the host-HBM data transfers with the CU execution, we use double buffering where
each computational unit interfaces with two channels. When the total host transfer time for input and output of
one batch is less than the total CU execution time for the same batch, the host transfer time is entirely hidden
and the CUs are actively executing at all times.

Bandwidth Optimization. The data elements of an application do not usually require more than 64 bits,
even less in case of custom data types. However, modern FPGA architectures feature wider busses so using
only part of the bus line to transfer the data leads to underutilize the bandwidth. It is possible to “pack" more
data elements to significantly reduce the number of clock cycles for data transfers. However, to do so, the CPU
code must efficiently prepare the data in the FPGA memory or into the network packets and the accelerator
needs to efficiently manage the multiple parallel data to avoid serialization when writing them into the buffers.
To fully exploit the parallelism, we conceptually divide the bus into multiple lanes and replicate the innermost
kernel as many times as needed within a CU, allowing each kernel to access one of the lanes. This way,

D3.2 - Data management techniques: final version 11



http://www.everest-h2020.eu

read/write modules still require the same number of cycles, but the accelerator can start the computation of
more “hardware threads” in parallel. An additional optimization uses custom data layouts with scheduling
principles for maximizing the bandwidth utilization [50].

Dataflow Optimization. Each single execution of the CU reads data from the FPGA memory, execute the
kernel operator(s) on them, and write back the results. When the kernel can be decomposed into multiple
operations, we can decompose the hardware module accordingly into elementary blocks. Such blocks can
be implemented as subfunctions in the kernel that communicate via AXI Stream in a dataflow model. These
hardware modules will thus execute in a pipeline, significantly improving the throughput. The number of ele-
mentary blocks in each subfunction is a tradeoff between latency and resource requirements. Indeed, having
more blocks in the same subfunction increase resource sharing opportunities but also increases the latency of
the pipeline stages, reducing the throughput. This optimization improves the performance but also increases
the resource usage, potentially limiting the total number of CUs that can be instantiated.

Custom floating-point types. Given the nature of the application data, it is often possible to customize the
bitwidth of the data without significant error degradation. From the memory viewpoint, data types with reduced
bitwidth require less on-chip memory resources, reducing the number of BRAM units that can be used. Also,
reducing the precision of the data allows for creating more “lanes” and thus enabling more parallel computation.

3.1.2 Storage of Data at Cluster Level

Data on the cluster level at IT4I reference infrastructure are handled by the Distributed Data Interface (DDI)
service which is part of the LEXIS Platform. The service provides asynchronous data transfers between
geographically distant data sources such as federation of iRODS zones. The service uses remote worker
processes implemented in Celery framework in Python. These worker processes use native client libraries to
transfer the data, in case of the clusters it uses native SSH-based protocols for data transfers like sftp or rsync.
It uses userspace level of access to the cluster and does not require any change in the cluster configuration.
The credentials and preparation of a work directory are handled by the HEAppE middleware, which the worker
process calls.

The DDI service provides REST API for data management, which resembles traditional object storage
extended with rich metadata index. The API provides a set of user endpoints for direct data transfers using
HTTPS based chunked upload (TUS protocol) and direct downloads. Another set of enpoints is provided
to manage the asynchronous data transfers between external data sources and HPC clusters. The LEXIS
Platform also offers a Python library Py4Lexis [40] which offers Python API as well as interactive terminal-
based interface for all DDI features, including direct access to iRODS zones connected to the LEXIS Platform
for large data transfers.

The DDI capabilities are nicely illustrated by their integration in the LEXIS workflows. The user first uses
the DDI to upload their input data and metadata to a particular iRODS zone and then executes a workflow,
where the uploaded input dataset is specified as paramater. The LEXIS workflow orchestrator then triggers
data movement through the DDI, which issues a set of tasks for the worker process, which in turn pulls the data
from the remote iRODS zone to a temporary staging area and uses HPC cluster native protocol to stage the
data to the cluster. The orchestrator then triggers an HPC job submission through the HEAppE middleware.
Once the job finishes, the orchestrator then triggers a DDI operation which transfers the output data produced
by the HPC job and stores them as a dataset in a selected iRODS zone along with a set of metadata. These
metadata also contain apart from user specified values also provenance metadata about the workflow and its
execution used to produce the output dataset.

3.2 Data Processing and Communication

The scope of this subsection is to cover the activities related mainly with the data processing and communi-
cation. In this task we define how the different components interact with the memories and communicate with
each other. Concerning data processing, this task will analyze the data access patterns, and the alignment of
data accesses with the width of the memory, taking into consideration the different memories of the EVEREST

D3.2 - Data management techniques: final version 12



http://www.everest-h2020.eu

heterogeneous platform. Memory access are also optimized for virtualized environments by enhancing the per-
formance of transactions between the virtual machines and the hardware accelerators, aiming at minimizing
data processing latencies and increasing the guests-hardware bandwidth.

We start the description of those activities by firstly providing information about the virtualization technology
of PCIe-attached FPGAs and afterwards on the DMT for the FPGA-based EVEREST heterogeneous platform.

3.2.1 VMs guests-host (PCIe virtualization) communication extensions

EVEREST supports virtualization with a dedicated framework, the EVEREST Virtualization Framework, that
is designed to simplify the use of FPGAs in virtual environments. As detailed in Deliverable D5.5, where the
framework is presented in depth, it leverages the SR-IOV support of the Xilinx QDMA IP to automate the main
actions related with accelerators associated with VMs, such as the creation, the attachment/detachment and
reconfiguration, automate several operations with dedicated scripts, and provides a pause functionality to allow
VFs reconfiguration without detaching from the guest. The virtualization framework functionalities (e.g., ESFM,
QDMA manager, QEMU extensions) are developed in WP5 (and, because of that, a detailed description about
such extensions and the EVEREST virtualization framework and its components can be found in Deliverable
D5.5). The part related to the communication between guests and the host is developed in WP3. This part
includes QDMA Virtual Function (VF) and Physical Function (PF) drivers extensions that are detailed here
below.

In the Deliverable D3.1 we highlighted the “VMs guests-hosts data transfer optimization” in section 3.2.1,
mainly targeting SoC-attached FPGAs. In this section, we are detailing the host-guest communication exten-
sions developed focusing on the virtualization of PCIe FPGAs. In particular, in WP3 we focused at finding a
way to notify the host when an FPGA kernel is in use to properly manage the FPGA accelerators lifecycle.
The use case we imagined for the EVEREST project involves having multiple VMs, each with one VF (FPGA
kernel) attached. Such VF can be detached anytime by the virtualization framework in the host via di ESFM
program. From the VMs point of view, this event is not predictable and can lead to a critical/inconsistent state
that brings to a kernel panic in the VM or eventually a crash in the host.

As a result, there is a need to enable communication between the host tool for the detachment (ESFM) and
the virtual machine driver to make sure that nor the VM or the host reach an inconsistent state. In this way,
the detach operation from the host can happen only when the guest is not actively using the FPGA. As shown
in figure 4, the VF driver in the VM takes care of informing the Physical Function (PF) about what VM is using
what VF (Step 1-2). The PF driver handles the requests of multiple VFs keeping track of the state of each
accelerator (step 3). State information are then accessible to ESFM via sysfs, a common mechanism used
by drivers to get information to host user space; for that reason, due to the changes done to the PF driver, it
creates a new file in the sysfs that a host user space program can read to know which kernel is in use and by
which VM. Consequently, when the user request an accelerator detachment (step 4), ESFM is able to read the
sysfs configuration (step 5) and only if possible forwards the request to the PF driver (step 6) that can proceed
with the detachment (step 7).

3.2.2 Data management techniques for the cloudFPGA platform

One of the foundational tasks of the workload processing on a heterogeneous system, like the EVEREST
platform, is the data movement in and out of the discrete computing resources. In the case of cloudFPGA, as
one of the computing nodes of the EVEREST platform, the primary medium to transfer data is the network.
In the deliverable D3.1 we explained the data management techniques for the IBM cloudFPGA platform in
detail. The continuous evaluation of the requirements for EVEREST as well as repeated performance tests
confirmed that the architecture presented in Figure 5 and Table 3 initially reported in Deliverable D3.1 still fulfill
the requirements of the project, thus it was not changed in the second part of the project. With the purpose
of making this deliverable a self contained document, the remaining part of this subsection, summarizes the
description of the data management techniques for the cloudFPGA platform that were extensively presented
in Deliverable D3.1, reporting here from the same deliverable also all the needed architectural figures, block

D3.2 - Data management techniques: final version 13



http://www.everest-h2020.eu

Figure 4 – VMs guests-host communication for detachment overview.

diagrams, and tables relevant for the explanation.

IBM has developed a TCP/UDP offload engine on the FPGA logic. The FPGA developer is provided with the
option to move network data to an AXI memory map (MM) interface or to an AXI4-Stream interface, inside the
FPGA. The data can be processed directly at line-rate or they can be buffered at the DRAM of the cloudFPGA
module.

The cFDK offers two Shells, the Kale and the Themisto. Both shells provide access to the “MEM” subsystem
in order to interact with two physical DDR4 memory modules. A block diagram of MEM is depicted in Fig. 5.
The memory channel #0 (MC0) is dedicated to the network transport stack (NTS) of the Shell. The user’s
application has full access to the 8 GB of memory channel #1 (MC1).

NTS

DM0

DM1

DM0

ICT MCC

MCCICT

poDDR4

MC0_AXI4

MC0_AXI4

MC1_AXI4

MC1_AXI4

TXP_AXI4

TXP_AXI4

RXP_AXI4

RXP_AXI4

pioDDR4

poDDR4

pioDDR4

8GB DDR4

8GB DDR4

MP0_AXI4

MP0_AXI4

MP1_AXI4

MP1_AXI4

TXP_Axis

TXP_Axis

RXP_Axis

RXP_Axis

TXP_Axis

TXP_Axis

ROLE

Figure 5 – Overview of the cloudFPGA memory subsystem (“MEM”).

Table 3 lists the sub-components of MEM and provides a link to their documentation as well as their archi-
tecture body.

Entity Description Architecture
MEM Memory Sub-System memSubSys
MEM/MC0 Memory Channel 0 memChan_DualPort
MEM/MC1 Memory Channel 1 memChan_DualPort_Hybrid
MEM/MC[0,1]/DM[0,1] AXI Data Mover PG022
MEM/MC[0,1]/ICT AXI Interconnect PG059
MEM/MC[0,1]/MCC UltraScale Architecture-Based PG150

Table 3 – The sub-components of cloudFPGA MEM module.

Simultaneous support for AXI4 memory-mapped and streaming interfaces for cF DRAM. In EVER-
D3.2 - Data management techniques: final version 14

https://github.com/cloudFPGA/cFDK/blob/main/SRA/LIB/SHELL/LIB/hdl/mem/memSubSys.v
https://github.com/cloudFPGA/cFDK/blob/main/SRA/LIB/SHELL/LIB/hdl/mem/memChan_DualPort.v
https://github.com/cloudFPGA/cFDK/blob/main/SRA/LIB/SHELL/LIB/hdl/mem/memChan_DualPort_Hybrid.v
https://docs.xilinx.com/v/u/en-US/pg022_axi_datamover
https://docs.xilinx.com/v/u/en-US/pg059-axi-interconnect
https://docs.xilinx.com/v/u/en-US/pg150-ultrascale-memory-ip


http://www.everest-h2020.eu

EST we choose to provide both popular interfaces for Xilinx FPGAs, i.e. an AXI4-full and an AXI4 stream.
This is achieved by implementing, as part of the Themisto Shell and the cFDK, an AXI DataMover and an
AXI Interconnect module to interface the ROLE to the physical DDR4 module. The AXI DataMover is a key
interconnect infrastructure IP that enables high throughput transfer of data between the AXI4 memory-mapped
and AXI4-Stream domains.

Network to DRAM buffering. Instead of having the accelerator to handle the network data directly, two
soft-modules, namely N2MS and N2MM, can process the network data stream and store it in the DRAM, using
either an AXI streaming interface or a memory interface respectively. As shown in Fig. 6, the network stream
is accumulated to a local memory until a payload of 4KB is reached. A 4KB burst write follows. From that
moment, a notification signal is raised to inform the accelerator that there are data into the memory so that the
processing can start. While the accelerator is processing the data, the N2MS and N2MM engines are working
independently. This allows the accelerator to utilize the entire bandwidth of the DRAM module over the AXI
interface. If the accelerator is programmed in C++/HLS, the #pragma dataflow directive can be employed to
allow for an initiation interval (II) of 1. This allows the accelerator’s pipeline to be utilized at every clock cycle.

NTS

DM0

MCCICT
MC1_AXI4

poDDR4

pioDDR4

8GB DDR4

MP0_AXI4

MP0_AXI4

MP1_AXI4

MP1_AXI4

TXP_Axis

TXP_Axis

ROLE

N2MM

N2MS 
 

stream<ap_uint<64>> &stream_from_network
(NTS delivers 64-bits every clock cycle)

stream<ap_uint<512>> &stream_to_mem
(N2MS packs 64-bits to 512-bits in a FIFO of 4KB)

N2MS issues a burst memory
write of size 64 every 64 cycles,
using the AXI memory stream

interface. 

stream<ap_uint<64>> &stream_from_network
(NTS delivers 64-bits every clock cycle)

ap_uint<512>[64] local_mem_to_mem
(N2MS packs 64-bits to 512-bits in a FIFO of 4KB)

N2MS issues a burst memory
write of size 64 every 64 cycles,
using the AXI memory-mapped

interface 

The reverse procedure is followed for the read part

The reverse procedure is followed for the read part

Figure 6 – A cF data management technique to optimize accelerator throughput.

Network payload encapsulation. Another DMT deals with the encapsulation of special data over the
TCP/UDP payload. For such cases in cF we provide two ways of handling such data:

• Through an AXI Lite memory-mapped channel provided by Themisto Shell.

• Through encapsulation over the TCP/UDP payload. The user has the freedom to encapsulate a custom
data header of arbitrary length (less than the configured MTU) into the UDP/TCP payload.

3.2.3 Data management techniques for Xilinx Alveo accelerators

In Deliverable D3.1 we introduced the Xilinx support for the Alveo accelerators. Here we discuss how this
support is leveraged in EVEREST. As presented in the Xilinx website [1], that is here summarized, the Alveo
card targeted in EVEREST have three essential features: a powerful and large FPGA for deploying the accel-
erator, a high-bandwidth memory architecture with multiple (virtual) channels, and an high-bandwidth PCIe link
to connect to a host server. Alveo designs have a conceptual model similar to cloudFPGA designs with a shell
and a role. The shell contains all the static functionality, while the accelerator generated by the EVEREST
SDK are deployed in the role. This topology is reflected in Figure 7 [1].

The Alveo FPGA cards used in EVEREST (u280 and u55c) feature from 8 to 16 GB of High-Bandwidth
Memory (HBM2) at 460GB/s of bandwidth that can be used for exploit data-level parallelism over multiple
accelerator instances (cf. Olympus optimizations in Deliverable D4.5). This memory region is referred to as
the device global memory. It requires the host code to transfer data accordingly to how the accelerators will
use them. For this reason, the hardware generation flow developed in EVEREST requires to produce not only
the hardware modules but also the corresponding software functions.

In addition, AXI lines between the global memory and the accelerators are 256 bits large, allowing for
transferring more data at the same time. However, such data must properly received, stored, and used by the
accelerators to avoid communication bottlenecks.
D3.2 - Data management techniques: final version 15



http://www.everest-h2020.eu

Figure 7 – Conceptual topology of Alveo devices, adapted from Xilinx website [1]. EVEREST accelerators are implemented in the role part

Specific to the design of the EVEREST accelerators, it is the points that are relevant for the DMT are:

• Moving data between the host and the global device memory is expensive. Such communication over-
heads must be hidden by properly balancing computation and communication.

• High bandwidth between the HBM channels and the FPGA logic must be properly exploited to achieve
high throughput.

• Within the FPGA fabric, logic can be efficiently deployed with HLS but requires methods to efficiently use
the limited on-chip storage resources.

Figure 8 – XRT Software Stack adapted from Xilinx Website [1]. EVEREST user-defined drivers rely on the XRT APIs to control the underlying hardware.

The Xilinx Runtume (XRT) is a low-level API, and can be used directly or it can be interfaced using higher
level APIS, such as OpenCL or XMA. Essentially, the role of XRT is to program and to manage operation
and the life cycle of the Alveo card kernels and allocating and migrating the memory between host and card.
Figure 9, adapted from the official Xilinx website [1] shows the standard top-level view of the available APIs.
In EVEREST we are utilizing both the high-level OpenCL and the low-level XRT APIs where the accelerator
drivers produced in WP4 can move the data accordingly to the generated hardware. For example, data buffer
must be filled in accordingly to the data layout defined for the accelerators. In general, the EVEREST code is
complementary to and leverages the XRT Software Stack to control the accelerators.

The memory of the EVEREST Alveo-based platform has six attributes. Given a pointer to a data buffer, that
data pointer may be virtual or physical. The memory to which it points may be paged or physically contiguous.
And, finally, from the standpoint of the processor that memory may be cacheable or non-cacheable.

An allocated memory space on the host side results in virtual page addresses of 4KiB. Moving those pages
to Alveo’s memory will result in resolving virtual page addresses to physical memory addresses. The next
step is the assembling of these physical addresses into a scatter gather list to enqueue to a DMA engine with
scatter-gather capability, which would then copy those pages one-by-one to their destination. The reverse work
is followed for moving a buffer from Alveo to a virtual, paged address rang on host memory.
D3.2 - Data management techniques: final version 16



http://www.everest-h2020.eu

Figure 9 depicts a simplified view of the system, while the virtual to physical mapping is reported in Fig-
ure 10. For performance reasons, within the Alveo card, accelerators operate only on physical memory ad-
dresses and data is always stored contiguously.

Figure 9 – Virtual Memory Transfer to/from Alveo

Building and managing those scatter gather lists and managing the page tables can become time consum-
ing even for a fast host processor. It’s much easier to build a scatter gather list, though, if all of the pages
are contiguous in physical memory. Modern operating systems provide memory allocators for this purpose.
In EVEREST we exploit this DMT to decrease the complex logic of advanced scatter-gather DMA lists. This
results in lower FPGA resource utilization and lower latency in host-FPGA memory operations.

3.2.4 HLS data management techniques

In this subsection we update the description of the data management techniques done at the HLS level. We
concentrated on loop pipelining and custom data types. Our description start from the text, figures, and tables
previously reported in Deliveralble D3.1, which have been update where needed, most notably in the addition
of new results on the HLS optimization, obtained in the second part of the project and in the description of the
cluster level communication.

Considering the data processing at the level of the FPGA accelerator leads to the analysis of data access
patterns, and of the alignment of data accesses with the width of the memory. This allows defining where the
HLS directives characterizing the memory access pattern should be inserted together with unrolling directives
and loop transformations to ensure alignment and improve performance. Another example is provided by
transformations like loop pipelining when applied at a higher level (e.g., MLIR), as they can take into account
latency-insensitive memory accesses and increase the instruction-level parallelism. In the following sections
of the deliverable we elaborate on some of the techniques that we exploit in EVEREST.

D3.2 - Data management techniques: final version 17



http://www.everest-h2020.eu

3.2.4.1 Loop pipelining

Loop pipelining aims at overlapping the execution of multiple loop iterations. This technique has been
successfully used in compiler infrastructures for decades [43], and it generally consists of two steps: loop
scheduling and code generation. Depending on the available computation and memory resources, and if inter-
iteration data dependencies allow it, a pipelined loop can issue the execution of a new iteration at every clock
cycle.

The proposed approach aims to leverage high-level code optimizations to provide a hardware-oriented
input description to High-Level Synthesis. Fig. 10 shows the main steps and tools involved: the input code
contains a loop to be pipelined, so the code is first passed to a scheduler to obtain a loop iteration schedule.
Then, we implement code transformations that work on the input code and use the schedule to produce the
pipelined loop. The resulting code is finally translated and processed by the HLS tool to generate an accelerator
description in Verilog/VHDL.

Figure 10 – Overview of the optimization flow for synthesis-oriented loop pipelining starting from MLIR description.

As previously mentioned, loop pipelining requires a scheduling phase and a code generation phase; we will
introduce here a simple example that will be useful to illustrate these steps more in detail. Let us consider a
for loop that reads values from an array, multiplies them with a constant, and writes them into another array. A
single iteration of this simple loop contains three operations: load, multiply, and store. Figure 11 represents the
data flow graph of one iteration; clearly, the three operations depend on each other and cannot be parallelized.

Figure 11 – Creation of a pipelined loop.

Loop pipelining allows scheduling operations from different original iterations together: as these operations
would not depend on each other, they could be executed in parallel without constraints. The result is shown
in Figure 11b), where each column represents one iteration of the new loop, and operations originating from
the same original iteration use the same color. By overlapping original iterations, loop pipelining eliminates
the parallelization constraints: all operations within the same iteration are independent now, so they can be
executed in parallel. Incomplete iterations at the beginning form a loop prologue; the last few iterations are also
incomplete, and they form a loop epilogue. The new loop is built of the complete iterations between prologue
and epilogue. In the example shown in Figure 11b), iterations I1 and I2 belong to the loop prologue, I N+1 and
D3.2 - Data management techniques: final version 18



http://www.everest-h2020.eu

I N+2 represent the epilogue, while the actual new loop starts from I3. If we assume that all functional units
execute in one clock cycle, the achieved II in this simple example is equal to 1, as shown in Fig. 12.

Figure 12 – Pipelined loop schedule.

Within the proposed flow, scheduling is performed by HatSchet, and code generation is implemented as a
set of transformations in MLIR; the pipelined loop is then passed to Bambu to obtain an HDL implementation.
It represents an alternative to other loop pipelining approaches that delegate scheduling and pipelining to the
HLS tool itself. Bringing loop pipelining (and possibly other optimizations) outside the scope of the HLS tool has
significant advantages: for example, the developer is more in control of the applied techniques, as their effects
are visible in the transformed IR. Moreover, applying transformations on a specialized, higher-level abstraction
increases flexibility, portability, and requires less time than implementing and exploring different techniques
within the HLS tool. Furthermore, MLIR is built to allow easy integration between different optimizations: this
means that loop pipelining may be combined with other techniques to create inputs to the HLS tool that are
more appropriate to generate efficient hardware accelerators. The results of the proposed approach for loop
pipelining applied to Polybench kernels are presented in Table 4.

Benchmark Baseline (cycles) Pipelined (cycles) Speedup
2mm 214.914 76.482 x2.81
3mm 304.576 117.428 x2.59
atax 41.911 16.869 x2.48
bicg 41.887 8.749 x4.79
doitgen 130.742 69.222 x1.89
gemm 244.622 83.002 x2.95
gemver 90.122 25.845 x3.49
mvt 43.362 16.722 x2.59
syr2k 227.582 70.910 x3.21
syrk 153.182 57.490 x2.66
trmm 74.362 37.392 x1.99

Table 4 – Performance of selected Polybench kernels: baseline and MLIR loop pipelining.

The modularity and flexibility provided by MLIR allow to introduce optimizations, as we did with affine loop
pipelining, and to experiment with existing ones, to generate optimized IRs for HLS. The affine dialect provides
a growing set of loop-oriented transformations as compiler passes, which can easily be enabled or disabled.
Even if some of them are also available as backend HLS optimizations triggered by pragmas, applying them
at the MLIR level allows to decouple loop optimizations (which do not necessarily require hardware-related
considerations) from the backend HLS tool, and thus enhance portability.

Loop pipelining can provide performance benefits on its own, but it can also be coupled with different
optimizations to explore different design points with different performance/area trade-offs. We explored a few
different options on the gemm kernel with the Bambu backend: Table 5 shows that it can be beneficial to
increase the number of iterations in the pipelined loop through loop permutation, which reduces the number
D3.2 - Data management techniques: final version 19



http://www.everest-h2020.eu

of cycles with a minimal increase in resource utilization. If we increase the size of the loop body through
unrolling, instead, we obtain an even faster design at the cost of significant area consumption. The same
exploration of design points would require manual modifications on the code when done at the C/C++ level; for
typical HLS optimizations such as loop unrolling, this can be as simple as adding a pragma, but it can require
significant code rewriting for other transformations (including loop permutation). In an MLIR-based design flow,
optimizations can be exposed as compiler passes and compiler options that are easier to enable/disable in a
design space exploration phase.

Optimizations Cycles DSPs LUTs Slices Registers Frequency Speedup Slices overhead
none 157122 10 1678 724 1397 102.27 MHz baseline baseline
loop pipelining 82362 20 3024 1303 3576 101.48 MHz 1.91x 1.80x
loop permutation + pipelining 81182 20 3006 1306 3413 100.94 MHz 1.93x 1.80x
loop unrolling + pipelining 17642 100 21380 8075 18671 90.39 MHz 8.91x 11.15x

Table 5 – Effect of affine optimizations on gemm (double, mini) synthesized by Bambu.

3.2.4.2 Custom data types

Most of the HPC applications deployed on cloud servers deal with complex computation flows operating on
floating-point data. Floating-point data types are commonly provided in two formats only, single- and double-
precision, and therefore, if the computation does not fully exploit the available range, floating-point calculations
result in wasted precision and power consumption. It is not worth addressing this waste when targeting CPU
execution, since arithmetic units in modern general-purpose processors are highly optimized to handle single-
and double-precision data types, and even if software-based implementations of smaller precision floating-point
types are available (e.g., through the MPFR library), they usually bring no improvement to the computation time
nor the power consumption.

When designing a hardware accelerator, on the other hand, it is possible to generate ad-hoc functional units
able to deal with custom data types. In this case, an application able to exploit computation on floating-point
data with smaller bitwidth is able to benefit from this technique in many aspects: when targeting FPGAs, it
may result in significant improvement in computation latency and resource usage, which can lead to faster and
more power-efficient accelerator designs. Furthermore, with a smaller bitwidth memories can be restructured
resulting in a smaller memory footprint and faster memory accesses during the computation flow.

Automated generation of custom floating-point functional units is available within the EVEREST SDK [31],
and high-level optimization phases are able to exploit it if the considered application, or part of it, can benefit
from this technique. At the end of the optimization flow, custom precision floating-point types are implemented
and integrated into the accelerator design by the PandA-Bambu HLS tool (details are in Deliverable D4.2).

In software, floating-point formats are mainly based on the IEEE standard, and their precision is classified
from half to quadruple. Most of the processors available provide a hardware implementation of single- and
double-precision functional units. Only recently they have started to add hardware support to half-precision
(see FP16 or BFLOAT16 formats), mainly because of their use in artificial intelligence applications. In an
FPGA accelerator, however, designers have more freedom to choose different formats, for example by relaxing
the number of bits required for the mantissa and exponent. This is a parameter that can be considered during
the EVEREST code-variant generation to generate alternatives that allow the run-time system to trade off
accuracy against resource consumption on the FPGA fabric. This has been achieved by integrating support for
parametric floating-point formats (with a variable number of bits of exponent and mantissa) into the higher-level
compiler infrastructure and into the HLS engine that generates the hardware accelerators.

To allow optimization of floating-point data during the HLS process, we relaxed the constraints on the num-
ber of bits of the mantissa and exponent of the IEEE 754 standard. We do not consider our approach, called
TrueFloat, to be a novel data type, since it is based on existing standards and uses their representation and
format. The novelty of TrueFloat lies in the fact that it allows the HLS tool to optimize floating-point opera-
tions before producing the Verilog: this is not possible in current approaches based on predefined RTL cores,
where the implementation of the floating-point operations is taken from a library without optimization at the
HLS level. Comparisons on basic floating-point operators such as adder, multiplier, and divider have been

D3.2 - Data management techniques: final version 20



http://www.everest-h2020.eu

Table 6 – Custom precision floating-point adder.

TrueFloat FloPoCo Template HLS
Target Spec Slices LUTs Cycles Frequency Slices LUTs Cycles Frequency Slices LUTs Cycles Frequency

Zynq7000
100MHz

e9m38 193 584 6 104.21 163 534 5 104.76 192 519 9 101.90
e8m23 122 340 5 101.06 103 291 5 104.49 125 300 8 109.16
e5m10 57 157 4 103.38 52 160 5 109.86 71 159 8 158.81
e3m4 28 93 4 113.01 23 70 4 117.20 43 93 7 164.96

Virtex7
200MHz

e9m38 185 590 6 205.42 193 545 8 208.89 219 508 10 268.96
e8m23 123 363 5 216.54 118 337 7 223.76 133 338 9 223.31
e5m10 54 161 4 215.10 48 161 6 239.12 63 143 8 259.13
e3m4 26 81 4 235.34 29 76 6 306.74 38 93 8 321.75

Virtex7
400MHz

e9m38 233 640 11 417.71 207 566 14 360.23 253 638 17 413.22
e8m23 141 390 8 394.16 126 254 12 370.23 168 399 17 445.43
e5m10 75 164 6 419.11 61 167 10 450.24 98 197 14 489.72
e3m4 38 97 6 408.83 41 94 9 414.07 55 124 13 524.93

carried out against two other research tools: FloPoCo [26] and Template HLS [51]. Both these implementa-
tions exploit a custom floating-point representation slightly different from the IEEE 754 standard to achieve
a simpler exception handling without impacting precision, at the cost of two additional bits: thus, a double-
precision floating-point which requires 64 bits to be represented in the IEEE 754 format would require 66
bits to be represented in the FloPoCo format used in [26] and [51]. An indirect comparison with commercial
floating-point cores (e.g., from Xilinx, Altera) is possible since FloPoCo has been already compared with such
cores as presented in [29]. Table 6, Table 7, and Table 8 show results of the synthesis for the three floating-
point operators for each one of the described implementations. Two different Xilinx FPGA boards have been
used, a Zynq7000 (xc7z020clg484-1) and Virtex7 (xc7vx485tffg1761-2), and three different target frequencies
(100MHz, 200MHz, 400MHz) have been selected to achieve a fair comparison also considering the flexibil-
ity of each solution. TrueFloat operators are synthesized into Verilog code using Bambu HLS, while Verilog
operators from the Template HLS library are generated using Xilinx Vitis HLS 2021.2. All accelerators are syn-
thesized using Xilinx Vivado 2021.2 and results are reported after implementation. Five floating-point formats
are explored by the benchmark:

• e9m38 9-bits exponent, 38-bits mantissa

• e8m23 8-bits exponent, 23-bits mantissa (IEEE 754 single precision)

• e5m10 5-bits exponent, 10-bits mantissa (IEEE 754 half precision)

• e3m4 3-bits exponent, 4-bits mantissa

The proposed approach is quite consistent in delivering a design close to the target frequency while still
being competitive with respect to FloPoCo [26] and Template HLS [51] both in terms of latency and resource
usage. Results for the TrueFloat floating-point addition (Table 6) are quite similar to FloPoCo ones while our
approach is able to achieve a better latency with higher target frequencies. The same stands for floating-point
multiplication (Table 7): the TrueFloat multiplication core employs a Karatsuba multiplier as its core multiplying
unit, which proves to be quite resilient to different frequencies requirements, while FloPoCo and Template HLS
exploit a bit heap to perform the same task. The use of a bit heap seems to be better in terms of resource
footprint, but is not suitable for clock-frequencies optimization and thus resulting in slower designs. Finally, sim-
ilar considerations may be extended to the floating-point division unit (Table 8): the TrueFloat implementation
relies on a loop to perform the long division, thus resulting in a non-pipelined core. Conversely, FloPoCo and
Template HLS exploit an unrolled version of the base-4 long division algorithm, which is suitable for pipelining,
but yields much higher impact on resource usage.

The aforementioned benchmark setup does not include EVEREST platforms like Kintex and Alveo boards,
which are evaluated separately in Table 9.

Floating-point cores for the Posit representation have not been considered so far, since Posit can not be
considered as a simple drop-in replacement for standard IEEE754 floating-point data types, as discussed
in [25]. There are many differences in number accuracy throughout the range of represented values between
IEEE754 and Posit encoding, operators’ behavior may differ and an accurate analysis of the application may
be required before applying such a radical transformation. Furthermore, as shown in [30], performance and

D3.2 - Data management techniques: final version 21



http://www.everest-h2020.eu

Table 7 – Custom precision floating-point multiplier.

TrueFloat FloPoCo Template HLS
Target Spec Slices LUTs DSPs Cycles Frequency Slices LUTs DSPs Cycles Frequency Slices LUTs DSPs Cycles Frequency

Zynq7000
100MHz

e9m38 133 331 8 6 111.55 80 216 6 3 74.96 77 153 5 4 105.29
e8m23 46 92 2 4 118.35 44 68 2 3 84.37 41 47 2 3 122.25
e5m10 27 50 1 4 126.05 15 27 1 3 108.71 24 38 1 6 185.22
e3m4 23 57 0 4 105.51 14 38 0 3 122.83 16 41 0 3 145.12

Virtex7
200MHz

e9m38 144 333 8 7 232.99 99 256 6 4 163.15 88 156 5 5 223.11
e8m23 48 91 2 5 220.60 47 69 2 4 177.39 38 44 2 4 221.68
e5m10 29 47 1 4 230.14 23 28 1 3 197.39 27 38 1 6 397.30
e3m4 21 59 0 4 245.63 13 37 0 3 255.29 17 41 0 3 278.94

Virtex7
400MHz

e9m38 224 400 8 15 411.18 144 284 6 6 255.29 84 106 5 10 250.13
e8m23 75 126 2 11 498.50 44 79 2 5 301.11 55 58 2 10 523.56
e5m10 31 62 1 5 396.98 31 40 1 4 252.20 34 39 1 9 556.48
e3m4 26 66 0 4 407.66 23 42 0 4 369.95 28 46 0 6 456.41

Table 8 – Custom precision floating-point divider.

TrueFloat FloPoCo Template HLS
Target Spec Slices LUTs Cycles Frequency Slices LUTs Cycles Frequency Slices LUTs Cycles Frequency

Zynq7000
100MHz

e9m38 191 566 26 127.48 478 1603 14 73.96 847 2188 28 127.19
e8m23 123 360 18 149.85 235 660 9 79.30 304 780 16 131.22
e5m10 62 172 12 159.79 77 205 6 102.10 91 258 8 116.90
e3m4 34 104 8 171.73 36 91 4 109.90 43 109 7 174.00

Virtex7
200MHz

e9m38 195 564 26 253.16 504 1453 16 168.86 678 2012 24 222.22
e8m23 119 359 18 277.39 221 626 11 154.96 357 860 19 254.26
e5m10 68 180 12 238.37 91 234 7 215.56 105 274 10 251.07
e3m4 32 99 8 302.38 39 103 5 231.64 37 106 7 313.87

Virtex7
400MHz

e9m38 311 669 49 340.71 640 1562 31 213.49 1250 2876 58 404.04
e8m23 190 411 19 344.35 253 645 20 236.12 544 1197 37 417.19
e5m10 75 187 12 404.69 80 195 11 252.33 174 367 22 473.93
e3m4 48 131 9 438.21 58 110 8 418.23 72 144 13 462.11

Table 9 – TrueFloat custom precision operators on the EVEREST target boards.

Adder Multiplier Divider
Target Spec Slices LUTs Cycles Frequency Slices LUTs DSPs Cycles Frequency Slices LUTs Cycles Frequency

Kintex
UltraScale
250MHz

e9m38 113 585 5 266.31 85 365 8 6 262.88 134 679 27 282.97
e8m23 160 827 5 247.52 90 32 5 2 298.42 88 441 18 301.57
e5m10 44 216 4 286.86 17 62 1 4 288.10 46 204 12 292.48
e3m4 24 99 4 295.51 20 106 0 3 326.58 25 118 9 335.57

Alveo
U55C
250MHz

e9m38 93 603 5 262.19 78 323 8 5 270.86 126 696 26 327.65
e8m23 58 331 4 271.37 22 89 4 2 292.65 87 440 18 340.25
e5m10 39 195 4 278.09 14 50 1 4 328.62 49 204 12 378.07
e3m4 15 89 4 315.76 25 106 0 3 441.70 23 117 9 475.06

Alveo
U280
250MHz

e9m38 102 583 5 250.44 76 322 8 5 278.32 123 696 26 313.68
e8m23 61 334 4 273.22 25 89 2 4 278.32 86 440 18 342.82
e5m10 41 194 4 275.86 14 50 1 4 328.62 47 204 12 357.78
e3m4 19 91 4 312.40 25 106 0 3 441.70 23 117 9 475.06

D3.2 - Data management techniques: final version 22



http://www.everest-h2020.eu

resource utilization of Posit cores are still not comparable to those of standard floating-point operators. Citing
from the conclusions of [25]: “Posit-to-posit operators are shown to be significantly more expensive, both
in terms of resources and delay, than IEEE operators for the same input width. For instance, addition and
multiplication on 32-bit standard Posit require about 50% more hardware and about 50% more delay than
standard-compliant of binary32 floats. This overhead should be put in balance with the increased accuracy
sometimes offered by posits. On the example of 32-bit formats, posits offer up to 3 extra bits of accuracy (an
11% improvement) in a limited domain of exponents, while degrading the accuracy outside of this domain due
to tapered precision.”

The choice of the value format affects the accuracy of the EVEREST application use cases, and trading
accuracy with performance and resources consumption is an important design decision during the process of
accelerating the application on FPGA. (See REQ5, REQ7, and REQ9 in D2.1.) In general, custom floating-
point and fixed-point formats positively impact data-intensive scientific computing use cases whenever numeric
stability is not a concern.

As an example, an inverse Helmholtz transform kernel has been synthesized exploiting different floating-
point formats. In this case, the same floating-point data type has been applied to the whole application, since it
is composed by a single kernel, but mixed data formats are supported as well. The default data type has been
modified with respect to both exponent and mantissa bitwidth: the most precise format used is the double-
precision IEEE 754 standard format with 11-bit exponent and 52-bit mantissa, while the least precise format
features 7-bit exponent and 23-bit mantissa. The presented kernel has been synthesized on a Xilinx Virtex 7
board (xc7vx690t-ffg1930) with a target frequency of 200MHz; the whole design is pipelined with an initiation
interval of one clock cycle. Results on overall clock cycles and resource usage (both slices and DSPs) for
the different data types are shown in Figures 13, 14 and 15, respectively. It is clear that both latency and
resource usage are linearly dependent with respect to the selected data type precision: lower precision data
type requires lower resource usage and lower overall latency for the computation. The increase in resource
usage observed with lower exponent bitwidths is due to the addition of conversion logic from the default input
format (standard double precision) to the internal lower precision data type.

Figure 13 – Number of clock cycles for inverse Helmholtz transform kernel with respect to different floating-point formats.

Custom floating-point and fixed-point formats are relevant also for the traffic modeling application when
considering the Probability Time-Dependent Routing (PTDR) algorithm. The most computing-demanding part
is based on Monte Carlo simulation. This part is not affected by numeric instability when we approximate the
values that describe the car positions and their distance. A design space exploration, where different floating-
point precisions are considered, is reported in Table 10; all accelerators are generated targeting an Alveo U55C
FPGA and a clock period of 3ns.

Another component of the traffic modeling application, i.e., the projection component in the map matching
algorithm, has been considered for data types optimization. In this case, however, the analysis of the baseline
C++ implementation revealed not only that double-precision trigonometric computation was superfluous, but
that the same results could be obtained using simpler fixed-point arithmetic, rendering the application of True-
Float types unnecessary. Table 11 quantifies the improvement in terms of performance and area consumption

D3.2 - Data management techniques: final version 23



http://www.everest-h2020.eu

Figure 14 – Number of slices for inverse Helmholtz transform kernel with respect to different floating-point formats.

Figure 15 – Number of DSPs for inverse Helmholtz transform kernel with respect to different floating-point formats.

when moving from the baseline implementation to the optimized one based on fixed-point arithmetic; the target
is again an Alveo U55C FPGA with a clock period of 3ns.

Finally, we have also examined applying precision reduction techniques to the radiation kernel from the
WRF use cases. The implementation details and preliminary exploration results are described in [31]. These
experiments show that a naive reduction in precision is feasible, but a technique that considers the structure of
the underlying constant data is much more effective (scaled variants). Combining the statistical data about the
value distributions with the physical limits of the atmospheric profiles, we arrive at a specialization of the data
types for the kernel interface shown in 16.

From these constraints on the inputs of the RRTMGP kernels, we can propagate the value range and
accuracy limits to the intermediaries and result values using base2. However, due to the structure of the
kernel, and the limits to its parallelization imposed by the way it is called from WRF, this transformation does not
yield sufficient benefits. In particular, on the FPGA target, the fixed-point kernel achieves a higher throughput
while not relying on DSPs, at the expense of a substantial amount of LUTs and FFs. Unfortunately, the overall
throughput of the kernel remains limited by the random-access lookup into the spectral constants table, and
thus no reduction in II is observed.

Table 10 – Exploration of custom floating-point formats for the PTDR application.

Format Slices LUTs DSPs Cycles Frequency
original (fp64) 1396 6962 28 9218302 322.58 MHz
e9m38 1437 6592 26 8570104 323.41 MHz
e11m25 1131 5558 20 6276459 325.41 MHz
e5m10 879 4068 19 5017615 335.68 MHz

D3.2 - Data management techniques: final version 24



http://www.everest-h2020.eu

Table 11 – Performance and area consumption improvement in the fixed-point map matching algorithm.

Kernel Slices LUTs DSPs Cycles
baseline 16748 79498 336 31737467
optimized 4445 19280 96 27412500
improvement 73,4% 75,7% 71,4% 13,6%

// 0 <= k * 2^77 <= 1e4 +/- 8 ULP [1]
#prescale_ld = 77 : i64
!SpectralConst = !base2.ui16_48
// 0 <= T <= 512 +/- 1e-3 [K]
!Temperature = !base2.ui9_10
// 0 <= p <= 131072 +/- 1e-1 [Pa]
!Pressure = !base2.ui17_4
// 0 <= r < 1 +/- 1e-8 [1]
!MixingFraction = !base2.ui0_27

Figure 16 – RRTMGP kernel interface MLIR data types

Comparison with existing methods. Existing formats for floating-point numbers include Posit, which
is a new alternative to represent real numbers for computers. The Posit number system has demonstrated
a higher accuracy over standard floating-point arithmetic for many scientific applications. However, when it
comes to implementing accelerators for these applications, the design methods and the costs are still unclear.
In EVEREST, we explored the generation of Posit-based accelerators with Bambu [48]. To add support for Posit
arithmetic to the HLS flow, we designed an RTL library of Posit operators based on FloPoCo, and integrated it
within Bambu. The design flow of the tool was extended to handle such an additional library without the need
of modifying the C/C++ source code. From the point of view of the programmer, the use of Posit arithmetic
for the computation of real numbers should be as transparent as selecting between single or double-precision
floating-point.

We performed HLS of several benchmarks with Bambu targeting a Xilinx Artix-7 (XC7A100T-1CSG324C)
FPGA device. In particular, for the HLS with Bambu we included the options -no-iob (so primary ports from
the IOB are disconnected, and large arrays can be instantiated in the target device) and -experimental-setup=VVD
(which provides similar settings for RTL synthesis as the commercial solution Vivado HLS). Under this ap-
proach, all objects and internal variables that need to be stored in memory are allocated on BRAMs rather
than on external memory.

To select a suitable target frequency for the HLS, we conducted detailed tests for individual arithmetic
operators targeting different maximum clock frequencies, which allow us to obtain more details in this regard.
Xilinx Vivado 2021.2 was used to perform the logic synthesis for the comparison of hardware resources.

To generate floating-point logic for the accelerators, the option -flopoco=float was used, so the floating-
point FUs are the ones provided by FloPoCo. However, such units are non-compliant with the IEEE 754
standard: although the memory format is in IEEE 754 format, subnormals are flushed to zero to save resources.
This could produce inaccurate results in applications that make use of such small-magnitude data. Also,
exceptions are handled in a much simpler way as required by the standard, and just a single rounding mode
is implemented (round to nearest, ties to even), rather than the five rounding rules defined in the standard.
Therefore, it should be kept in mind that a fully IEEE 754-compliant implementation would incur a much higher
overhead than the current one. On the other hand, we extended Bambu with the option -flopoco=posit to
allocate posit FUs in the final accelerator.

Posit adders require about 1.5× hardware resources (LUTs and FFs) than the corresponding float units,
while this overhead is between 2× and 6× for the rest of the operators [48]. Nonetheless, the amount of
resources required by Posit32 is always fewer than by Float64 units. Regarding the frequency, all the functional
units except the Float64 multiplier satisfy the timing target conditions up to 150 MHz. For a target frequency of
200 MHz a few operators violate the timing constraint, and none of them reach 300 MHz. Therefore, 150 MHz
is a clear candidate as the target frequency for the HLS of complex applications. Finally, it must be noted how
the iterative algorithm used for division and square root has a direct impact on the latency of such units as the

D3.2 - Data management techniques: final version 25



http://www.everest-h2020.eu

target frequency increases, especially for the Posit64 format.

HLS results in [48] show that, independently of the target frequency, the 32 and 64-bit floating-point multi-
pliers require 2 and 9 DSPs, respectively, and the corresponding posit multipliers make use of 2 and 12 DSPs,
respectively. Also, the design of the floating-point division includes a table for fast computation, which requires
7 and 14 extra BRAMs when synthesizing the 32 and 64-bit designs, respectively.

We believe that these resource requirements are not suitable for the accelerators that we need to create in
EVEREST because they would limit the number of accelerators that can run in parallel.

3.2.5 Inter-Node and Inter-Cluster communication

The Evkit distributed library allows EVEREST use-cases to distribute their workload over a set of nodes in
a cluster. The nodes have to be reachable using the TCP/IP protocol. Communication between the nodes
is performed using the ZeroMQ message broker, which allows load balancing computational requests from a
single Evkit client to a set of Evkit workers (each running on a separate node). The load balancing is performed
in a round-robin fashion. Evkit also allows broadcasting management messages to all connected workers,
which is leveraged for synchronizing global shared state. This is described in more detail in Deliverable D5.5.

In terms of data management, Evkit workers primarily exchange data with an Evkit client through their
ZeroMQ connection based on top of the TCP/IP protocol. They are also able to load input data files from a
(typically network-based) filesystem.

For the communication inside applications running multiple processes within one of the HPC-clusters at
IT4I and IBM, the standard implementations of the message-passing-interface (MPI) were used (OpenMPI as
well as proprietary alternatives). No EVEREST-specific changes or optimizations were applied, because the
communication between and within the individual nodes of the HPC clusters is assumed to be trusted and
reliable. For the communication between cloudFPGA nodes, a dedicated implementation of the core elements
of the MPI protocol was used.

The LEXIS Platform’s data-aware workflow orchestration capabilities allow us to distribute tasks between
different clusters, provided that an HEAppE instance is available and the credentials are set correctly. A special
case of this type of task is offloading to a remote cluster over a VPN. The IBM cluster is only accessible via
a dedicated VPN. To allow FPGA tasks to be offloaded from the LEXIS platform to this infrastructure, a VPN
tunnel must be established. Access to the tunnel must comply with strict security measures imposed by IBM.

Where needed, in EVEREST inter-note and inter-cluster communication benefits also from the data pro-
tection mechanisms developed within the project, that will be described in depth in the next section. Anomaly
detection is one of the proposed protection mechanisms, that is designed and implemented into a library
suitable for big data workflows. The library can serve as automated data sanitization against attack vectors tar-
geting data analysis and machine learning models, but can also protect from natural noises which may cause
unexpected behaviours in the computation.

At the workflow level anomaly detection is integrated into inter-node or inter-cluster communication by
instantiating an anomaly detection component that automatically sanitizes the input data flowing from the
previous node or the previous cluster. Practically, this security mechanism can be introduced on any data flow
in a workflow. The anomaly detection module reads the input data and raises an anomaly when detected.
Custom reaction to the identified anomaly can be taken based on the application and workflow. As mentioned,
the anomaly detection library is explained in details in section Section 3.3.1, and the specifics of anomaly
detection integration within a workflow, in this case the renewable energy workflow, are detailed in Deliverable
D6.3.

D3.2 - Data management techniques: final version 26



http://www.everest-h2020.eu

3.3 Data Protection

At the infrastructure level, we provide two types of support to ensure data protection handled and computed in
EVEREST. The first aims to detect if something anomalous happened, by analyzing the data themselves. The
second type of support is the classical protection offered by using appropriated cryptographic primitives and
functions. Here, we rely on these primitives and the associated protocols to ensure that data is not modified or
accessed by a non-authorized party. In EVEREST, we use both approaches. In the first phase of the project,
we concentrated mostly on the first approach, the one based on anomaly detection. In the second part of the
project we followed two main directions. On the one side, we continued and completed the approach based on
anomaly detection, and, starting from the initial results obtained in the first part of the project, we built a library
of anomaly detection components. On the other, we built a library of classical cryptographic primitives that can
be instantiated during the creation of a workflow.

3.3.1 Anomaly Detection

In Deliverable D3.1, Hierarchical Temporal Memory (HTM) has been compared with other anomaly detection
techniques and its suitability for EVEREST use case and the the achieved preliminary results drove us to the
selection of HTM as the anomaly detection technique to be used within the EVEREST environment. In this
section, we summarize from Deliverable D3.1 the motivations behind this choice, then we describe the ADlib,
that has been developed in the second part of the project. ADlib includes various models for carry out anomaly
detection and a support for the selection of model selection.

Figure 17 shows how anomaly detection fits into the goals of data protection. Anomaly detection mainly
handles the integrity of the working data. It can be applied to any of the working data, as well as node metrics,
in order to monitor the nodes.

Figure 17 – Anomaly Detection as part of the Data Protection goals.

Anomaly detection within EVEREST is performed on time-series data, which are both, univariate and multi-
variate. All anomaly detection needs to be done in an unsupervised setting and on both streamed data (which,
in our case, require real-time detection) and batched data. Furthermore, to not incur an excessive overhead,
the selected technique should be computationally efficient. Ideally, within EVEREST we want to get as close
as possible to autonomous anomaly detection. This means that we need a technique which works with any
type of data, as well as any combination of different data types. Furthermore, the technique should not need
D3.2 - Data management techniques: final version 27



http://www.everest-h2020.eu

much tuning to produce good results. HTM is a technique used for prediction and anomaly detection on time-
series data [34, 4]. It has several properties which make it highly suitable for EVEREST. HTM is an inherently
temporal algorithm. Additionally, the algorithm handles patterns in the data changing over time. This is called
concept drift, and it is a challenging problem when using time-series data. HTM is an online and continuous
algorithm, which is especially important when the data is streamed and requires real-time detection. Being
online and continuous means firstly that the input can be handled by the algorithm immediately on its arrival,
there is no need to wait for further input. Secondly, being continuous means there is no need to store previous
values of the time-series to learn. This circumvents common techniques which may hamper the computational
efficiency of algorithms, for instance rolling windows or batches of data. Researchers also found that HTM is
not sensitive in its hyperparameters, which makes it suitable for EVEREST as this means less tuning is re-
quired to obtain good performance. Returning to the requirement of handling a large variety of data, the HTM
uses encoders to transfer any input data into binary vectors, which it can work with. The general pipeline of
the HTM algorithm can be seen in Figure 18.

Data
Binary
Vectors SDR SDR

Prediction
Classification

Encoder HTM
Spatial pooler

HTM
Sequence
Memory

Classifier

Figure 18 – The general pipeline of the HTM algorithm. Image Source: [22]

These encoders are highly suitable for EVEREST because they allow the HTM to work with any kind of
input data so long as an encoder exists which can transform it into binary vectors while maintaining semantic
information. Maintaining semantic information in this context means that semantically similar input should have
overlapping 1 bits in their binary vector. The spatial pooler is then able to use this data. The spatial pooler
learns to be sensitive to patterns in the input space through Hebbian learning, and in general encodes the
binary vectors into sparse distributed representation. This is essentially a binary vector where only a small
percentage of bits (e.g. 2%) are 1. The sparsity gives some benefits in robustness as well as memory /
computational efficiency. The sequence memory then learns to recognize temporal patterns. It is also the
sequence memory where prediction and anomaly detection occur.

ADLib

Starting with the chosen technique of HTM, a library has been developed towards the goal of automated
anomaly detection. As previously described, HTM was chosen as it was a suitable baseline for all use-cases.
The library has since been extended with other models which work differently, i.e. the Autoencoder working in
a batched data setting.

The Autoencoder was included as it is more suitable for high-dimensional data compared to the HTM, and
it is possible to accelerate this technique using existing libraries. For example, the Autoencoder is the preferred
choice for the Duferco use-case as this has higher dimensionality data to process. The choice of technique
between the Autoencoder and the HTM is handled automatically during the model selection stage, which will
be explained in the following text.

The library comprises of two stages, which are provided to the user. The model selection stage and the
detection stage. During model selection, the library considers a given input dataset and aims to find the most
suitable model for this particular data. This model is subsequently stored, and will be used during the detection
stage. In the detection stage, (new) input data is parsed and processed by the model. The output of the
detection stage is a file providing the indexes of datapoints which are considered anomalous in the input data.
This standardized file can then be kept for general statistics, or used for actions such as replacing the data,
removing the data, or even halting the workflow.

Figure 19 shows an example of how anomaly detection can be introduced to a workflow, and which files
are handled. The model selection is coloured to indicate that it is executed only once. It does not need to be
explicitly removed from the workflow, there is simply a flag which will make this stage exit immediately.

The library is capable of parsing the most common data formats, and at least all data formats provided by
use-case partners. This parsing is done automatically based on file extension. However, some data formats
require additional input to allow parsing. For these formats, there is a simple standardized metadata file which

D3.2 - Data management techniques: final version 28



http://www.everest-h2020.eu

Data Collection WRF

(a) Snapshot of example workflow

Data Collection Model Selection Detection WRF

Storage

Dataset D1

Dataset D1 Metadata

Model M1

Dataset D2

Anomaly indexes

(b) Snapshot of workflow with anomaly detection introduced

Figure 19 – A high-level overview of the ADLib stages

the user must provide once during model selection. This metadata file is explained in the documentation of the
library such that a user can easily create one. This metadata file is stored along with the model in a single file,
and therefore does not need to be provided again in the detection stage.

For the model selection, the library uses the open-source optimisation framework of Optuna, which al-
lows the automated finding of the optimal hyperparameters, as well as the best model. The library uses the
optimisation framework for a given amount of time, before outputting the best found model at that point.

In the detection stage, this model is loaded in and used to process the given input datasets. As previously
mentioned, HTM is an online continuous learning technique, which is a great quality for this setting. For
other techniques, such as the autoencoder, the batch size is determined during model selection stage. In the
detection stage, this technique is also continuously trained. This is not ideal as the data may obviously contain
anomalous data, but it is required to handle concept drift, and will provide better long-term performance than
leaving the model unchanged.

The library is implemented as a python library, and as such can be easily executed provided the required
external libraries are installed. Furthermore, a docker container containing the required libraries is available,
allowing the execution of the library within a container as well. Within EVEREST, both approaches are utilised.

3.4 Cryptographic Libraries for Data Protection

Efficient cryptographic primitives are needed to help protect communication to, from and within the FPGA. In
EVEREST, we developed a number of cryptographic primitives providing encryption, authenticated encryption
and authenticated encryption with associated data, and we provide them in form of a library of hardware com-
ponents that can be instantiated and used to secure cloud FPGAs. The library includes the necessary RTL
source files for all selected the encryption (block and stream ciphers) and authenticated encryption primitives
we identified being relevant for the EVEREST SDK. The RTL is implemented in the VHDL hardware coding
language and can be ported in to any single FPGA device or cluster easily. In the remaining part of this sec-
tion, we introduce the cryptographic primitives that we implemented and we report the performance obtained
synthesizing them on the target FPGAs.

Block ciphers and stream ciphers cater to the cryptographic operation of encryption. Whereas encryption
deals with message confidentiality, it does not address message integrity, i.e. the situation when an adversary
can tamper with the ciphertext, which would potentially result in the receiver getting an incorrect plaintext. A
message authentication code (MAC) [46], often called tag, is a short piece of information used to authenticate
a message, confirming that the message came from the stated sender (its authenticity) and that it has not
been changed. The MAC value protects both a message’s data integrity as well as its authenticity, by allowing
verifiers (who also possess the secret key) to detect any changes to the message content. Authenticated
Encryption (AE) [46] or Authenticated Encryption with Associated Data (AEAD) [46] is a form of encryption
which simultaneously provides confidentiality, integrity, and authenticity assurances of the data.

The large body of research addressing efficient implementation of cryptographic algorithms on standalone
FPGAs served us as based for developing our library. The starting point for the library development, was
thus to study and understand the implementation strategies for various cryptographic algorithms on FPGA.
As a typical FPGA device can accommodate a huge amount of logic gates, the metric we target is mostly
throughput.

D3.2 - Data management techniques: final version 29



http://www.everest-h2020.eu

b b b b

Secret Key

RF1 RF2 RF3 RFr
Public Input Output

r iterations

Figure 20 – Commonly, block or stream cipher consists of repeated application of a publicly known round function.

We started focusing on the AES algorithm. The AES-128 block cipher [23] is the the de-facto encryption
standard worldwide, having been recommended by the United States’ National Institute of Standards and Tech-
nology, in 2001. Since the design of AES-128 was finalized, many block ciphers with lightweight properties
have been proposed. Among them, PRESENT [18] is well-studied with respect to its security and implemen-
tation. The cipher has been standardized in ISO/IEC 29192 “Lightweight Cryptography” process. While the
above ciphers have mostly targeted optimization of hardware area, there have been other block ciphers aimed
at optimizing other lightweight design metrics. The block cipher Prince [19], was designed for low latency (de-
fined as the total delay incurred in computing an operation) based applications like memory encryption, while
Midori [8] had been designed targeting energy optimization.

3.5 Architectures

Both block and stream ciphers consists of similar transformations which are applied repetitively on some public
and private input to produce the output stream, see Figure 20. In the case of block ciphers specifically, the
public input is the plaintext, the private input is the secret key and the output is obviously the encrypted plaintext
also referred to as the ciphertext. As a result we can classify the flavours of block cipher implementation on
hardware in the following four categories:

• Round based circuits: These are designs in which each round function is executed in one clock cycle.
The architecture includes the circuitry required to execute the function, proceeded by a register on which
the intermediate outputs of the round function computation are written on to. If the specification of the
block or stream cipher requires R executions of the round function, then a round based implementation
would require exactly R clock cycles to execute the encryption operation.

• Multiple round-unrolled circuits: this architecture extends the previous: instead of one it uses r < R
round function units connected serially. Since architecture computes r round function operations sequen-
tially, they require only

⌈R
r

⌉
clock cycles. Because of the higher hardware footprint, such circuits consume

more power but take less number of clock cycles to execute the encryption operation. Some circuits, e.g.
for r = 2, are known to be energy-optimal for some specific block ciphers, especially on ASIC [9].

• Fully round-unrolled circuits: This takes unrolling to the extreme level, i.e. r = R so that only a single
clock cycle is required to execute encryption.

• Serialized circuits: The idea in these circuits is to reduce hardware footprint by employing increasingly
lower number of logic gates, i.e. a fraction of the entire round function circuit. As a result the circuit takes
multiple clock cycles to compute one round function. For example, the AES-128 circuit in [42] has only
one S-box circuit whereas the AES round function requires 16 S-boxes. The circuit takes 160 cycles just
to execute a single round function.

3.5.1 Cryptographic Primitives: Block Ciphers

In this subsection we compare the performances of 5 different block ciphers when implemented on FPGA
platforms. We have considered block ciphers with both algebraically simple and complicated round functions.
D3.2 - Data management techniques: final version 30



http://www.everest-h2020.eu

We include in our exploration the AES algorithm, mostly as reference point, and a number of lightweight
algorithms, that appear to be more suitable for providing encryption at a finer granularity without incurring in a
high performance overhead. In the target platform for the EVEREST SDK, like cloud FPGAs, where hardware
area is not as critical as in extremely constrained devices, one of the parameters that is the primary target of
optimization is throughput. For lightweight ciphers, the architecture most suited for this goal is generally the
fully unrolled one, so our designs are implemented following that design strategy. In the following part of this
section we highlight the characteristics of the ciphers evaluated.

• AES 128: The Advanced Encryption Standard [23] has a simple Substitution Permutation Network (SPN)
type round function which supports 128-bit plaintexts and 128-bit, 192-bit or 256-bit keys. The non linear
layer of the AES algorithm consists of 16 applications of an S-box function in {0,1}8 → {0,1}8. The
permutation layer consists of ShiftRows and MixColumnoperations. Since the block cipher state can
be interpreted as a 4× 4 array of bytes, the ShiftRows operation simultaneously rotatesthe i-th row of
the state by i bytes. The MixColumn operationmultiplies each column of the state by an MDS matrix
overGF(28). This is followed by an AddRoundkey operation where a 128-bit RoundKey, derived at each
round from the initial secret key, is Xored to the state.

• Present: Present [18] is a 64-bit block cipher which has an SPN type round function. It has been adopted
as a standard in ISO/IEC 29192-2. The cipher specifications allow for both 80-bit and 128-bit Key (we
focused only focus on the 80-bit). The only non-linear component in the round function is the 4-bit S-box
(i.e. over {0,1}4→ {0,1}4), which is applied in parallel to each of the sixteen nibbles of the 64-bit state
after the RoundKey addition. The state bits are then rearranged by a permutation layer.

• Prince: Prince [19] is a 64-bit block cipher with an SPN type round function. It allows for a 128-bit key
but does not use any KeyScheduling logic. Prince is based on the FX construction: The 128-bit Key is
divided into the most and least significant 8-byte blocks k0,k1 and a key k′ is computed from them by a
simple rotate and add operation. k0 and k′ are used as whitening keys, and k1 is used as the RoundKey
in every round. The cipher uses three types of Round functions: Forward, Middle and Inverse. The
Forward round consists of a SubBytes, MixColumn and addition of a Round constant and RoundKey.
The Middle round consists of a SubBytes, MixColumn and Inverse SubBytes layer. The Inverse rounds
are structurally and functionally the opposite of the Forward round. The main reason the cipher was
designed was to minimize the latency of the encryption, making it very suitable for memory encryption.

• Midori: Midori [8] is an SPN based block cipher designed specifically to be energy efficient, and it is
still the block cipher solution that consumes the least amoung of energy. The specifications support both
64-bit and 128-bit plaintexts and 128-bit key. Since the 64-bit version has been the subject of Invariant
Subspace attacks [33], while the 128-bit version is still secure, we consider only Midori-128.

• Gift-128: Gift [12] was proposed as a redesign of the popular PRESENT block cipher. The idea was
to design a cipher that would be efficient on both hardware and software platforms and yet offer a high
degree of security. The cipher is of SPN type and like PRESENT uses a bit permutation as the linear
layer, so as to minimize the hardware footprint. The design supports both 64 and 128-bit plaintexts, and
we focus on the 128-bit version here.

Table 12 reports the experimental results obtained using xc7a200t Xilinx device from the Artix7 family and
the Alveo U280. The design was synthesized, mapped, placed and routed using the Xilinx Vivado design suite
2021.2.

3.5.2 Cryptographic Primitives: Stream Ciphers

A Stream cipher is an algorithm that takes a Secret Key K as input, usually a binary string of around 80−
256 bits, and applies a number of transformations to produce a long pseudorandom sequence known as the
keystream. This sequence is usually XORed with each bit of the plaintext to produce the encrypted ciphertext.
So, if P = p0, p1, p2, . . . represents the bits, bytes, or words of the plaintext, and κ = k0,k1,k2, . . . represents the

D3.2 - Data management techniques: final version 31



http://www.everest-h2020.eu

Table 12 – The synthesis of block ciphers.

Device Design # LUTs # Slices/CLBs Latency f †
max T Pmax

(ns) (MHz) (Gbps)
Artix 7 AES-128 11977 3387 129.341 7.7 0.92

Present 2222 801 66.222 15.1 0.90
Prince 1263 505 45.631 21.9 1.31

Midori-128 3840 1454 62.939 15.9 1.89
Gift-128 3836 1303 66.193 15.1 1.80

Alveo U280 AES-128 17091 3049 43.333 23.1 2.75
Present 2092 291 25.248 39.6 2.36
Prince 1320 216 20.097 49.8 2.97

Midori-128 4976 858 35.026 28.6 3.40
Gift-128 2560 458 29.888 33.5 3.99

† : Note that fmax is generated from the Post-PAR simulation.

Table 13 – The eStream Portfolio.

Profie 1 (HW) Profile 2 (SW)
Grain v1 [36] Salsa20 [16]

MICKEY 2.0 [7] Sosemanuk [14]
Trivium [20] HC128 [53]

Rabbit [17]

keystream bits, bytes, or words produced by the Stream Cipher using the Secret Key K, then the encryption
rule is given by:

ci = pi⊕ ki , ∀i,

where C = c1,c2, . . . represents the ciphertext bits, bytes or words. Since the Secret Key is already known to the
receiver, he can compute the keystream bits k0,k1, . . . at his end, which are then used to decrypt the ciphertext
as follows:

pi = ci⊕ ki , ∀i.

Stream ciphers can be viewed as approximating the action of a proven unbreakable cipher, the one-time
pad (OTP). Stream ciphers have been largely studied during the eSTREAM project [2], which had the goal
to design new stream ciphers suitable for widespread adoption. The call for primitives was first issued in
November 2004. The project was completed in April 2008. The project was divided into separate phases and
the project goal was to find algorithms suitable for different application profiles.

The eSTREAM portfolio ciphers fall into two profiles. Profile 1 stream ciphers are particularly suitable for
hardware applications with restricted resources such as limited storage, gate count, or power consumption.
Profile 2 contains stream ciphers more suitable for software applications with high throughput requirements.
The portfolio currently contains the algorithms reported in Table 13. Among them, we concentrated on the
following cihphers since they have been widely studied in literature:

• Trivium: Trivium[24] is a stream cipher designed for the eSTREAM project by DeCannière and Preneel
and is currently an ISO standard under ISO/IEC 29192-3:2012. Trvium has an internal state of 288 bits
which is divided into 3 registers of sizes 93, 84 and 111 bits respectively, see Figure 21. The stream
cipher uses an 80-bit key and 80-bit Initialization Vector (IV) which is used to initialize the state. The
setup is updated for 1024 iterations using a very simple to implement update function shown partially in
Figure 21.

• Grain 128: The Grain family of stream ciphers. It consists of three ciphers: Grain v1, Grain 128, Grain
128a. In this chapter we focus on Grain 128 [35] which offers 128 bit security. Like the other members of
the Grain family, Grain 128 has a connected register structure as shown in Figure 22. Grain-128 consists
of a 128-bit Linear-Feedback Shift Register (LFSR) and a 128-bit Nonlinear-Feedback Shift Register
(NFSR), and uses an 128-bit key K. Given that Lt = [lt , lt+1, . . . , lt+127] is the LFSR state at the t-th clock

D3.2 - Data management techniques: final version 32



http://www.everest-h2020.eu

1 66 69 93t3 t1

94 162 171 177t1 t2

178 243 264 288t2 t3

Figure 21 – Structure of Trivium. The AND gates s91 · s92, s175 · s176, s286 · s287 are added to the leftmost XOR gates before the 2nd, 3rd and 1st registers
respectively and have been omitted for ease of depiction. The keystream bit produced every clock cycle is given as z = t1 + t2 + t3.

NFSR LFSR

g(Xt) f (Yt)

h(Xt ,Yt)/
/

zt

⊕

⊕
Figure 22 – Structure of Stream Cipher in Grain amily

interval, Grain-128’s LFSR is defined by the update function f given by:

f (Yt) = lt+96 + lt+81 + lt+70 + lt+38 + lt+7 + lt .

The NFSR state is updated as nt+128 = lt +g(·) for NFSR update function g, which is given by:

g(Xt) = nt+96 +nt+91 +nt+56 +nt+26 +nt +nt+3nt+67 +nt+11nt+13+

nt+17nt+18 +nt+27nt+59 +nt+40nt+48 +nt+61nt+65 +nt+68nt+84.

The output function is of the form:

zt = h′(Xt ,Yt) =
⊕
a∈A

nt+a +h(s0, . . . ,s8)+ l93,

where A= {2,15,36,45,64,73,89}, h(s0, . . . ,s8)= s0s1+s2s3+s4s5+s6s7+s0s4s8, and (s0, . . . ,s8)= (nt+12, lt+8,

lt+13, lt+20,nt+95, lt+42, lt+60, lt+79, lt+95). The cipher is initialized with a 128-bit key and a 96-bit IV. 256
clocks of initialization are executed before entering the keystream phase.

Also in this case, our target platform was the xc7a200t Xilinx device from the Artix7 family. The results
are reported in Table 14 Since stream ciphers, once initialized, continuously produces keystream every clock
cycle, we can experiment with different number of unrolled rounds r for each of the stream ciphers. The higher
the value of r, the higher is the device utilization, but it also ensures higher throughput.

3.5.3 Cryptographic Primitives: Authenticated Encryption

Authenticated Encryption (AE) or Authenticated Encryption with Associated Data (AEAD) is a form of encryp-
tion which simultaneously provides confidentiality, integrity, and authenticity assurances on the data [46]. The
D3.2 - Data management techniques: final version 33



http://www.everest-h2020.eu

Table 14 – The synthesis reports for Stream Ciphers.

Device Design r # LUTs # Slices/CLBs #FFs Latency f †
max T Pmax

(ns) (MHz) (Gbps)
Artix 7 Trivium 36 364 110 297 2.656 376.5 12.62

72 462 168 296 2.740 365.0 24.47
144 786 344 295 3.687 271.2 36.37
288 1481 597 291 6.398 156.3 41.92

Grain-128 32 551 245 260 4.109 243.4 7.25
64 986 418 260 5.817 171.9 10.25

128 1815 782 310 8.820 113.4 13.52
256 4216 1550 401 15.731 63.6 15.52

Alveo U280 Trivium 36 258 43 297 6.121 163.4 5.48
72 401 67 296 5.659 176.7 11.85

144 746 121 295 7.996 125.1 16.77
288 1275 184 294 10.470 95.5 25.62

Grain-128 32 471 79 260 5.730 174.5 5.20
64 983 149 259 7.715 129.6 7.73

128 1747 253 258 14.843 67.4 8.03
256 4178 649 258 18.669 53.6 12.77

† : Note that fmax is generated from the Post-PAR simulation.

need for AE emerged from the observation that securely combining a confidentiality mode with an authentica-
tion mode could be error prone and difficult. This was confirmed by a number of practical attacks introduced
into protocols and applications by incorrect implementation, or lack, of authentication (including SSL/TLS)
[15, 52, 5]. A typical programming interface for AE mode implementation would provide the following functions:
a) Encryption that takes as input plaintext, key, and optionally a header that will not be encrypted, but will be
covered by integrity protection. It produces as output a ciphertext and authentication tag (MAC), and b) De-
cryption that takes as input ciphertext, key, authentication tag, and optionally a header and outputs a plaintext,
or an error if the authentication tag does not match the supplied ciphertext or header.

The diffusion of low-resource devices and their security requirements spurred the NIST Lightweight Cryp-
tography competition [3], that started in 2018 and completed 5 years after announcing ASCON 128[27] as
the winner. Since the selection process have been concludes only recently, we report a comparison between
ASCON 128, the selected algorithm, and two schemes that moved to the second round of competition. We
selected GIFT-COFB and ROMULUS as comparison since they are bootstrapped either directly via lightweight
block ciphers or variants of them. More precisely, they are directly instantiated with the Gift block cipher [12]
or Skinny block cipher [13]. ASCON 128, GIFT-COFB and ROMULUS are further compared with AES-GCM.
These fours schemes are likely to be very important for the foreseeable future. We summarize their character-
istics in the next part of this section.

• AES-GCM Galois/Counter Mode (GCM) [28] is an authenticated encryption algorithm designed to provide
both data authenticity (integrity) and confidentiality. GCM is defined for block ciphers with a block size
of 128 bits. Galois Message Authentication Code (GMAC) is an authentication-only variant of the GCM
which can form an incremental message authentication code. GCM is proven secure in the concrete
security model. It is secure when it is used with a block cipher that is indistinguishable from a random
permutation; however, security depends on choosing a unique initialization vector for every encryption
performed with the same key (see stream cipher attack). For any given key and initialization vector
combination, GCM is limited to encrypting 239−256 bits of plain text (64 GiB).

GCM combines the well-known counter mode of encryption with the new Galois mode of authentica-
tion [28]. The key-feature is the ease of parallel-computation of the Galois field multiplication used for
authentication. This feature permits higher throughput than encryption algorithms, like CBC, which use
chaining modes. T

The authentication tag is constructed by feeding blocks of data into the GHASH function and encrypting

D3.2 - Data management techniques: final version 34



http://www.everest-h2020.eu

the result. This GHASH function is defined by:

GHASH(H,A,C) = Xm+n+1,

where H = EK(0128) is the Hash Key, a string of 128 zero bits encrypted using the block cipher, A is data
which is only authenticated (not encrypted), C is the ciphertext, m is the number of 128-bit blocks in A
(rounded up), n is the number of 128-bit blocks in C (rounded up), and the variable Xi for i= 0, . . . ,m+n+1
is defined below.

First, the authenticated text and the cipher text are separately zero-padded to multiples of 128 bits and
combined into a single message Si:

Si =



Ai for i = 1, . . . ,m−1

A∗m ∥ 0128−v for i = m

Ci−m for i = m+1, . . . ,m+n−1

C∗n ∥ 0128−u for i = m+n

len(A) ∥ len(C) for i = m+n+1

where len(A) and len(C) are the 64-bit representations of the bit lengths of A and C, respectively, v =

len(A) mod 128 is the bit length of the final block of A, u = len(C) mod 128 is the bit length of the final block
of C, and ∥ denotes concatenation of bit strings. Then Xi is defined as:

Xi =
i

∑
j=1

S j ·H i− j+1 =

{
0 for i = 0

(Xi−1⊕Si) ·H otherwise

The second form is an efficient iterative algorithm (each Xi depends on Xi−1) produced by applying
Horner’s method to the first. Only the final Xm+n+1 remains an output.

The most critical operation in GCM is multiplication in the finite field GF(2128). The multiplier uses the
irreducible polynomial p(x) = x128 +x7 +x2 +x+1 to compute C = AB mod p(x). In [49], several implemen-
tation options for such a multiplier are proposed, including bit-parallel, digit-serial and hybrid multipliers.
Bit-parallel multipliers use multiplication by x as the fundamental circuit of computation and replicate it
128 times for the complete operation. Digit serial multipliers take this idea forward by making multipli-
cation by xm as the basic unit. Hybrid multipliers redefine the original finite field GF(2k) as GF((2m)n)

where k = mn. Arithmetic calculations can then be performed using circuits in the subfield GF(2m) and
combining them in the extension field in the extension field GF((2m)n).

All the above architectures take more than one clock cycles to compute the result of multiplication. Since
our core encryption algorithm will operate in a single clock cycle, we propose an architecture that will
compute the multiplication also in a single cycle. Let A(x),B(x) be two polynomials of degree 2k−1. The
Karatsuba method of multiplying them requires the following. We first split both the polynomials into 2
degree k−1 polynmials as follows:

A(x) = aL(x)+ xkaH(x), B(x) = bL(x)+ xkbH(x),

The multiplication operation requires the following logic operations over k-bit polynomials:

1. Compute S = (aL⊕aH) · (bL⊕bH).

2. Compute L = aL ·bL and H = aH ·bH .

3. Compute M = S⊕L⊕H.

It is easy to see that A(x) ·B(x) = x2kH⊕ xkM⊕L. Thus the original 2k bit multiplier requires 3 k-bit multi-
pliers plus some gates performing linear operations. Thus one can recursively define multiplication over
128-bit polynomials as multiplication over 64-bit polynomials which in turn can be defined as multiplica-
tions over 32-bit polynomials and so on. The base case is defining multiplication over 2-bit (i.e. degree
1) polynomials. This can be constructed easily by defining a look up table {0,1}4→{0,1}4, i.e. that takes

D3.2 - Data management techniques: final version 35



http://www.everest-h2020.eu

m

m
Counter

AES

H registerCiphertext
Multiplier

0n

Plaintext

Xi−1

Si

n

Figure 23 – AES-GCM circuit.

Table 15 – The synthesis reports for AES-128 GCM.

Device Design # LUTs # FFs # Slices Latency f †
max T Pmax

S-box Mixcolumns (ns) (MHz) (Gbps)
Artix 7 Small Tiny 22955 308 8775 168.092 5.95 0.71

Tradeoff Tiny 29687 301 10942 178.925 5.59 0.67
LUT Tiny 14626 304 5034 73.893 13.53 1.61

Small Fast 23794 300 9831 163.204 6.13 0.73
Tradeoff Fast 23945 302 9694 166.131 6.02 0.72

LUT Fast 14624 302 4788 74.203 13.48 1.61
T-Table 20204 300 6614 87.922 11.37 1.36

Alveo U280 Small Tiny 22922 294 3808 43.193 23.15 2.76
Tradeoff Tiny 23207 294 3913 40.895 24.45 2.92

LUT Tiny 14005 294 2473 32.365 30.90 3.68
Small Fast 22921 294 3906 43.114 23.19 2.77

Tradeoff Fast 23214 294 3990 41.208 24.27 2.89
LUT Fast 14027 294 2447 33.283 30.04 3.58

T-Table 21335 294 3774 44.187 22.63 2.70
† : Note that fmax is generated from the Post-PAR simulation.

the 4 bit coefficients of the two 2-bit polynomials and produces the 4 bit coefficients of the product. The
result of the above logic circuit is a polynomial of degree 254, i.e. 255 bit-coefficients. We now need
to perform the modulo p(x) operation to reduce it to 128 coefficients. However this is a purely linear
operation and needs only a few XOR gates depending on the structure of p(x).

We experiment with a number of different architectures for the components of the AES block cipher. We
experiment with four different architectures of the S-box, i.e. Small, Tradeoff, and LUT. These three were
proposed in [45]: “Small” refers to the smallest S-box circuit existing in literature, whereas “Tradeof” is
the circuit that provides a balance between latency and circuit area.“LUT” refers to a simple look-up-table
style of implementation which the synthesizer optimizes. We further explore two different styles: Fast
and Tiny of implementation of the Mixcolumns circuit. “Tiny” refers to the smallest implementation of the
circuit (92 gates) proposed in [44]. “Fast” refers to the 103 gate implementation in [11] which, despite
larger, it is instead characterized by the shortest gate depth. We further compare these implementations
with T-Table based implementations which are known to be extremely fast on FPGA platforms [32].

The AES-GCM circuit is depicted in Figure 23. In the 1st clock cycle the hash key H = EK(0) is com-
puted and stored in the Hash register. Thereafter every 128-bit block of plaintext and associated data
is processed in one block to produce ciphertext. Simultaneously, the MAC is computed using a Horner-
like computation using the H and an auxiliary register using the single cycle finite field multiplier. Thus
processing n blocks of data takes only n+1 clock cycles.

The following are the results obtained after the designs were synthesized, mapped, placed and routed
on the xc7a200t Xilinx device from the Artix7 family and on the Alveo U280 platform.

The results show that for table based architectures, the total throughput of around 4 Gbps can be reached
on the Alveo U280 platform. It is well known that the GCM algorithm may be further parallelized by a
factor of k by using a proportionally multiple amount of circuit resources. This allows for reaching speeds
well above 100 Gbps depending on the type of application.

D3.2 - Data management techniques: final version 36



http://www.everest-h2020.eu

2x/3x

bb b bEK EK EK bb b b EKEK
Tag

nonce

AD1 ADa

M1

CT1

G

LFSR

EK G

2x/3x

LFSR

G

2x/3x

LFSR

M1

Mm

CTm

G EKG

2x/3x

LFSR

Mm

Figure 24 – GIFT-COFB mode of operation.

• GIFT-COFB GIFT-COFB [10] is a lightweight AEAD candidate and a submission to the recently closed
NIST lightweight cryptography standardization process. The algorithm reached the final round of the
competition. The construction processes 128-bit blocks with a key and nonce of the same size and has
a small register footprint, only requiring a single additional 64-bit register. Besides the block cipher, the
mode of operation deploys a bit permutation and a finite field multiplication with different constants. Note
that unlike GCM, multiplication in GIFT-COFB occurs by only a few constant field elements. As such this
circuit is completely linear and can be efficiently implemented in hardware using simple XOR gates.

Mathematically, GIFT-COFB is a block-cipher-based authenticated encryption mode that integrates GiFT-
128 as the underlying block cipher with an 128-bit key and state. The construction adheres to the COm-
bined FeedBack (COFB) mode of operation [21] which provides a processing rate of 1, i.e., a single block
cipher invocation per input data block. The mode only adds an additional 64-bit LFSR state L (initialized
as the first 64 Most Significant Bits (MSBs) of EK(Nonce)) to the existing block cipher registers and thus
ranks among the most lightweight AEAD algorithms in the literature.

In this mode, encryption interspersed by 3 operations: execute the operation G on the state, Update
the LFSR L, Add plaintext/associated data to state as shown in Figure 24. The G operation is given by
G(X0,X1) = (X1,X0 ≪ 1), where X0,X1 are the upper and lower 64 bit blocks of a a 128 bit word. The
register L is initialized with the first 64 MSBs of EK(Nonce) and updated by finite field multiplication over
GF(264) by the constant 2x3y where

x =

{
1 if |A| mod n = 0 and A ̸= ε,

2 otherwise;

y =

{
1 if |M| mod n = 0 and M ̸= ε,

2 otherwise.

The GIFT-128 Block cipher [12] has 40 rounds in which each round consists of a substitution layer com-
posed of 4-bit S-boxes. It uses a bit permutation over 128-bits as the linear layer. Initially designed
keeping in mind software efficiency, it is more or less efficient in both software and hardware platforms.

The block diagram of the implementation is depicted in Figure 25. In the 1st clock cycle the LFSR L
is updated with the top half of EK(Nonce). Thereafter every 128-bit block of plaintext/associated data
is processed in one block to produce ciphertext. Simultaneously, the LFSR is updated using finite field
computations. After all the plaintext and associated data (AD) have been processed, the mode uses
one additional encryption call to produce the MAC. Thus processing n blocks of data takes only n+ 2
clock cycles.

• ROMULUS

ROMULUS is an AEAD scheme designed by Iwata et al. [41], and uses the SKINNY family of block
ciphers. In this work, we provide implementations for Romulus-N1. This the primary candidate of the
family that employs SKINNY-128-384 tweakable block cipher.

Romulus-N1 makes 1/2 block cipher call per associated data block, and 1 block cipher call per message
block. It admits 128-bit key, 128-bit nonce, variable-length message chopped into 128-bit blocks, and

D3.2 - Data management techniques: final version 37



http://www.everest-h2020.eu

m

State Register

GIFT-128

Ciphertext

m

Plaintext/AD

G

L Register

S→ 2x3yS

Nonce

Figure 25 – GIFT-COFB Circuit.

bb b b
0128

AD1
AD2 NAD2a−1

CT1

ρ

AD2a M1

bb b b

CT2

ρ

M2

T

ρ

0128

CTm

ρ

Mm

EL,d,·,K EL,d,·,K EL,d,·,K

N

EL,d,·,K EL,d,·,K

N

Figure 26 – The high-level view of Romulus-N1, which depicts the processing of 2a associated data and m message blocks. L denotes the 56-bit LFSR
that counts the number of processed blocks, and d denotes a single byte domain separator followed by 064.

produces 128-bit tag. in the sense that each output of the block cipher and the incoming data block
(associated data or message) are together passed through a light combinatorial function denoted by ρ.
ρ(S,M) = (S′,C) is defined as S′ ← S⊕M and C← G(S)⊕M. For each byte, G performs the following
operation: G(x7||x6||x5||x4||x3||x2||x1||x0) := (x0⊕ x7)||x7||x6||x5||x4||x3||x2||x1. The output of this function is
immediate input to the next block cipher call. Hence a register keeps this running state, and at the last
step it is encrypted to produce the tag.

Romulus handles odd and even authenticated data blocks differently; the odd blocks are input to ρ, and
even blocks are fed to the nonce port of the block cipher, as the underlying cipher SKINNY-128-384 has
a 384-bit long tweakey. The actual AEAD nonce is not used before all authenticated data blocks are
processed, and later used as block cipher nonce while message blocks are encrypted. A 56-bit LFSR
is also a part of the tweakey for SKINNY calls, and keeps the count of authenticated data and message
block fed to the AEAD circuit since the beginning of the AE operation.

Figure 26 describes the three phases a full AEAD operation passes through, namely processing of (1)
associated data, (2) nonce and (3) message blocks.

Figure 27 depicts the ROMULUS-N1 Architecture. Other than the tweakable block cipher we have the
LFSR L which supplies a part of the tweak. After all the plaintext/AD have been processed, the mode
uses one additional encryption call to produce the MAC. Thus processing n blocks of data takes only n+1
clock cycles.

• ASCON 128 ASCON 128 has been declared the winner of the NIST lightweight cryptography competition
It is a permutation based AEAD, as in the core cryptographic primitive used in the design is a permutation
function over 320 bits and not a block cipher. The ASCON permutation a state size of 320 bits (consisting
of five 64-bit words x0,x1,x2,x3,x4) that are updated in four phases: Initialization, Processing of Associated
Data, Processing of Plaintext/Ciphertext, and Finalization.

All phases use the same permutation function p that is applied 12 times in the Initialization and Finaliza-
tion phase and 6 times in the data processing phase. The data i.e. both the plaintext and AD is handled
in 64-bit blocks. The Initialization phase takes the IV, Key and Nonce and runs the ASCON permutation
function 12 times on it, followed by xor with the key. After the Initialization phase the optional associated
data is processed. In the Encryption phase, each plaintext block Pi is XORed with the secret state to
produce one ciphertext block Ci. The Finalization process xors the key K again to the state and extracts
the tag T for authentication.

D3.2 - Data management techniques: final version 38



http://www.everest-h2020.eu

State Register

SKINNY-128

CiphertextPlaintext/AD

L Register

0

ρ

-384

Figure 27 – ROMULUS-N1 circuit.

IV‖K‖N

pa

Initialization

0∗‖K

A1
r

pb
c

As
r

pb
c

Associated Data

0∗‖1

P1C1
r

c
pb

Pt−1 Ct−1
r

c
pb

Plaintext

Pt Ct
r

c

K‖0∗

pa

Finalization

K

T

128

Figure 28 – The figure depicts the processing followed in ASCON 128 encryption cycle.

The architecture of ASCON 128 is reported in Figure 28. The core circuit is the ASCON permutation
p6 i.e. the round function p iterated 6 times. Hence initialization and finalization takes 2 cycles each.
Processing each 64-bit block of Plaintext or AD takes 1 cycle only. Thus processing n blocks of 128-bit
data takes only 2n+2+2 = 2n+4 clock cycles.

Table 16 compares synthesis results for the 2 lightweight schemes with AES-GCM. It is possible to see
seen that ASCON 128 and GIFT-COFB have a massive advantage in terms of throughput over the lightweight
schemes. In particular the most latency intensive part of the circuit is the permutation circuit that require only
6 rounds to be implemented consecutively. This is one of the reasons that reduces the latency and elevates
the maximum operable frequency and hence throughput.

m

m

ASCON p6

IV‖K‖N 0∗ ‖1/K‖ 0∗

AD/Plaintext

m

Ciphertext

Tag

K

State
Register

Figure 29 – ASCON 128 circuit.

D3.2 - Data management techniques: final version 39



http://www.everest-h2020.eu

Table 16 – The synthesis reports.

Device Design # LUTs # FFs # Slices/CLBs Latency f †
max T Pmax

(ns) (MHz) (Gbps)
Artix-7 GIFT-COFB 5931 205 1791 44.422 22.5 2.68

Romulus-N1 45953 454 15342 180.206 5.5 0.66
AES-GCM 20204 300 6614 87.922 11.4 1.36

ASCON 128 2644 327 708 22.133 45.2 2.69

Alveo U280 GIFT-COFB 4008 196 647 31.496 31.75 3.78
Romulus-N1 9512 191 1516 104.865 9.53 1.14
AES-GCM 14005 294 2473 32.365 30.90 3.68

ASCON 128 2736 326 429 15.802 63.3 3.77
† : Note that fmax is generated from the Post-PAR simulation.

D3.2 - Data management techniques: final version 40



http://www.everest-h2020.eu

4 Conclusion

This deliverable refines, extends, and updates the content of Deliverable D3.1 and reports the final version
of the DMTs developed in WP3 throughout the duration of the EVEREST project. In addition to the results
achieved at M18 of the project (notably the development of the EVEREST data lifetime and the DMTs in the
Xilinx Alveo accelerators that are reported in this deliverable as they where presented in Deliverable D3.1) this
deliverable reports the activities carried out in the second part of the project. In addition to an update of the
Data Management Architecture, we have recently designed a mechanism for graceful detachment of FPGA
kernels; we have completed with new analysis and results the DMTs for custom data types. We have also
enhanced the data protection support in EVEREST by adding additional algorithms to the anomaly detection
library and by providing a library of cryptographic primitives. Finally, we developed the final version of the
support for storage and communication at cluster level.

In conclusion, DMTs are a crucial component of any data driven application. When developing the DMTs
within the EVEREST project, we considered a wide spectrum of applications and also considered future use
and development of the EVEREST SDK beyond the completion of the project. We believe that the data man-
agement techniques proposed and developed are fulfilling this goal.

D3.2 - Data management techniques: final version 41



http://www.everest-h2020.eu

Acronyms

AXI Advanced eXtensible Interface. 10, 12, 14, 15

BRAM Block Random Access Memory. 9, 11, 12

CU Compute Units. 11

DDR Double Data Rate. 14, 15

DMA Direct Memory Access. 10, 11, 16, 17

DMT Data Management Technique. 13, 15–17

DMTs Data Management Techniques. 6, 7, 9, 41

HBM High Bandwidth Memory. 11

D3.2 - Data management techniques: final version 42



http://www.everest-h2020.eu

References

[1] Get Moving with Alveo: Acceleration Basics. https://www.xilinx.com/developer/articles/

acceleration-basics.html. [Online; accessed 25-June-2024].

[2] eSTREAM, the ECRYPT stream cipher project. eSTREAM, The ECRYPT Stream Cipher Project, 2012.
https://www.ecrypt.eu.org/stream/.

[3] Nist lightweight cryptography project, 2019. Available at https://csrc.nist.gov/projects/

lightweight-cryptography.

[4] Subutai Ahmad, Alexander Lavin, Scott Purdy, and Zuha Agha. Unsupervised real-time anomaly detection
for streaming data. Neurocomputing, 262:134–147, 2017. Online Real-Time Learning Strategies for Data
Streams.

[5] Nadhem J. AlFardan and Kenneth G. Paterson. Lucky thirteen: Breaking the TLS and DTLS record
protocols. In 2013 IEEE Symposium on Security and Privacy, SP 2013, Berkeley, CA, USA, May 19-22,
2013, pages 526–540. IEEE Computer Society, 2013.

[6] Apache airflow™. https://airflow.apache.org. [Online; accessed 22-March-2024].

[7] Steve Babbage and Matthew Dodd. The stream cipher mickey 2.0. eSTREAM, ECRYPT Stream Ci-
pher Project Report, 2005. http://www.ecrypt.eu.org/stream/p3ciphers/mickey/mickey_

p3.pdf.

[8] Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, Kyoji Shibutani, Harunaga Hiwatari, Toru Akishita,
and Francesco Regazzoni. Midori: A block cipher for low energy. In Tetsu Iwata and Jung Hee Cheon,
editors, Advances in Cryptology - ASIACRYPT 2015 - 21st International Conference on the Theory and
Application of Cryptology and Information Security, Auckland, New Zealand, November 29 - December 3,
2015, Proceedings, Part II, volume 9453 of Lecture Notes in Computer Science, pages 411–436. Springer,
2015.

[9] Subhadeep Banik, Andrey Bogdanov, and Francesco Regazzoni. Exploring energy efficiency of
lightweight block ciphers. In Selected Areas in Cryptography - SAC 2015 - 22nd International Confer-
ence, Sackville, NB, Canada, August 12-14, 2015, Revised Selected Papers, pages 178–194, 2015.

[10] Subhadeep Banik, Avik Chakraborti, Akiko Inoue, Tetsu Iwata, Kazuhiko Minematsu, Mridul Nandi,
Thomas Peyrin, Yu Sasaki, Siang Meng Sim, and Yosuke Todo. Gift-cofb. Cryptology ePrint Archive,
2020.

[11] Subhadeep Banik, Yuki Funabiki, and Takanori Isobe. Further results on efficient implementations of block
cipher linear layers. IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 104-A(1):213–225, 2021.

[12] Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki, Siang Meng Sim, and Yosuke Todo.
GIFT: A small present - towards reaching the limit of lightweight encryption. In Cryptographic Hardware
and Embedded Systems - CHES 2017 - 19th International Conference, Taipei, Taiwan, September 25-28,
2017, Proceedings, pages 321–345, 2017.

[13] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi, Thomas Peyrin, Yu Sasaki,
Pascal Sasdrich, and Siang Meng Sim. The SKINNY family of block ciphers and its low-latency variant
MANTIS. In Advances in Cryptology - CRYPTO 2016 - 36th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part II, pages 123–153, 2016.

[14] Côme Berbain, Olivier Billet, Anne Canteaut, Nicolas Courtois, Henri Gilbert, Louis Goubin, Aline Gouget,
Louis Granboulan, Cédric Lauradoux, Marine Minier, Thomas Pornin, and Hervé Sibert. Sosemanuk, a
fast software-oriented stream cipher. eSTREAM, ECRYPT Stream Cipher Project Report, 2006. http:
//www.ecrypt.eu.org/stream/p3ciphers/sosemanuk/sosemanuk_p3.pdf.

[15] Daniel Bernstein. Failures of secret-key cryptography. Invited talk to FSE 2013. Available at https:
//cr.yp.to/talks/2013.03.12/slides.pdf.

D3.2 - Data management techniques: final version 43

https://www.xilinx.com/developer/articles/acceleration-basics.html
https://www.xilinx.com/developer/articles/acceleration-basics.html
https://www.ecrypt.eu.org/stream/
https://csrc.nist.gov/projects/lightweight-cryptography
https://csrc.nist.gov/projects/lightweight-cryptography
https://airflow.apache.org
http://www.ecrypt.eu.org/stream/p3ciphers/mickey/mickey_p3.pdf
http://www.ecrypt.eu.org/stream/p3ciphers/mickey/mickey_p3.pdf
http://www.ecrypt.eu.org/stream/p3ciphers/sosemanuk/sosemanuk_p3.pdf
http://www.ecrypt.eu.org/stream/p3ciphers/sosemanuk/sosemanuk_p3.pdf
https://cr.yp.to/talks/2013.03.12/slides.pdf
https://cr.yp.to/talks/2013.03.12/slides.pdf


http://www.everest-h2020.eu

[16] Daniel J. Bernstein. Salsa20/8 and salsa20/12. eSTREAM, ECRYPT Stream Cipher Project Report,
2006. http://www.ecrypt.eu.org/stream/papersdir/2006/007.pdf.

[17] Martin Boesgaard, Mette Vesterager, Thomas Christensen, and Erik Zenner. The stream cipher rabbit.
eSTREAM, ECRYPT Stream Cipher Project Report, 2006. http://www.ecrypt.eu.org/stream/

p3ciphers/rabbit/rabbit_p3.pdf.

[18] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel Poschmann, Matthew J. B.
Robshaw, Yannick Seurin, and C. Vikkelsoe. PRESENT: an ultra-lightweight block cipher. In Pascal Paillier
and Ingrid Verbauwhede, editors, Cryptographic Hardware and Embedded Systems - CHES 2007, 9th
International Workshop, Vienna, Austria, September 10-13, 2007, Proceedings, volume 4727 of Lecture
Notes in Computer Science, pages 450–466. Springer, 2007.

[19] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav Knezevic, Lars R. Knudsen, Gre-
gor Leander, Ventzislav Nikov, Christof Paar, Christian Rechberger, Peter Rombouts, Søren S. Thomsen,
and Tolga Yalçin. PRINCE - A low-latency block cipher for pervasive computing applications - extended
abstract. In Xiaoyun Wang and Kazue Sako, editors, Advances in Cryptology - ASIACRYPT 2012 - 18th
International Conference on the Theory and Application of Cryptology and Information Security, Beijing,
China, December 2-6, 2012. Proceedings, volume 7658 of Lecture Notes in Computer Science, pages
208–225. Springer, 2012.

[20] Christophe De Cannière and Bart Preneel. Trivium -specifications. eSTREAM, ECRYPT Stream Cipher
Project Report, 2005. http://www.ecrypt.eu.org/stream/p3ciphers/trivium/trivium_

p3.pdf.

[21] Avik Chakraborti, Tetsu Iwata, Kazuhiko Minematsu, and Mridul Nandi. Blockcipher-based authenticated
encryption: How small can we go? In Cryptographic Hardware and Embedded Systems - CHES 2017
- 19th International Conference, Taipei, Taiwan, September 25-28, 2017, Proceedings, pages 277–298,
2017.

[22] Yuwei Cui, Subutai Ahmad, and Jeff Hawkins. The htm spatial pooler—a neocortical algorithm for online
sparse distributed coding. Frontiers in Computational Neuroscience, 11, 2017.

[23] Joan Daemen and Vincent Rijmen. Rijndael/aes. In Henk C. A. van Tilborg, editor, Encyclopedia of
Cryptography and Security. Springer, 2005.

[24] Christophe De Canniere and Bart Preneel. Trivium. In New Stream Cipher Designs: The eSTREAM
Finalists, pages 244–266. Springer, 2008.

[25] Florent de Dinechin, Luc Forget, Jean-Michel Muller, and Yohann Uguen. Posits: The good, the bad and
the ugly. In Proceedings of the Conference for Next Generation Arithmetic 2019, CoNGA’19, New York,
NY, USA, 2019. Association for Computing Machinery.

[26] Florent de Dinechin and Bogdan Pasca. Designing custom arithmetic data paths with flopoco. IEEE
Design & Test of Computers, 28(4):18–27, 2011.

[27] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer. Ascon v1.2: Lightweight
authenticated encryption and hashing. J. Cryptol., 34(3):33, 2021.

[28] Morris Dworkin. Recommendation for block cipher modes of operation: Galois/counter mode (gcm) and
gmac. Technical report, National Institute of Standards and Technology, 2007.

[29] Xin Fang and Miriam Leeser. Open-source variable-precision floating-point library for major commercial
fpgas. ACM Trans. Reconfigurable Technol. Syst., 9(3), jul 2016.

[30] Luc Forget, yohann Uguen, and Florent de Dinechin. Hardware cost evaluation of the posit number
system. In Compas’2019 - Conférence d’informatique en Parallélisme, Architecture et Système, pages
1–7, Anglet, France, June 2019.

D3.2 - Data management techniques: final version 44

http://www.ecrypt.eu.org/stream/papersdir/2006/007.pdf
http://www.ecrypt.eu.org/stream/p3ciphers/rabbit/rabbit_p3.pdf
http://www.ecrypt.eu.org/stream/p3ciphers/rabbit/rabbit_p3.pdf
http://www.ecrypt.eu.org/stream/p3ciphers/trivium/trivium_p3.pdf
http://www.ecrypt.eu.org/stream/p3ciphers/trivium/trivium_p3.pdf


http://www.everest-h2020.eu

[31] Karl F. A. Friebel, Jiahong Bi, and Jeronimo Castrillon. BASE2: An IR for binary numeral types. In
13th International Symposium on Highly-Efficient Accelerators and Reconfigurable Technologies (HEART
2023), HEART2023, pages 19–26, New York, NY, USA, June 2023. Association for Computing Machinery.

[32] Tim Güneysu and Amir Moradi. Generic side-channel countermeasures for reconfigurable devices. In
International workshop on cryptographic hardware and embedded systems, pages 33–48. Springer, 2011.

[33] Jian Guo, Jérémy Jean, Ivica Nikolić, Kexin Qiao, Yu Sasaki, and Siang Meng Sim. Invariant subspace
attack against full midori64. Cryptology ePrint Archive, 2015.

[34] Jeff Hawkins and Subutai Ahmad. Why neurons have thousands of synapses, a theory of sequence
memory in neocortex. Frontiers in Neural Circuits, 10, 2016.

[35] Martin Hell, Thomas Johansson, Alexander Maximov, and Willi Meier. A stream cipher proposal: Grain-
128. eSTREAM, ECRYPT Stream Cipher Project Report, 2008. http://www.ecrypt.eu.org/

stream/p3ciphers/grain/Grain128_p3.pdf.

[36] Martin Hell, Thomas Johansson, and Willi Meier. Grain - a stream cipher for constrained environments.
eSTREAM, ECRYPT Stream Cipher Project Report, 2005. http://www.ecrypt.eu.org/stream/

p3ciphers/grain/Grain_p3.pdf.

[37] HEAppE middleware. https://github.com/It4innovations/HEAppE. [Online; accessed 22-
March-2024].

[38] Lexis platform. https://opencode.it4i.eu/lexis-platform. [Online; accessed 22-March-2024].

[39] Lexis platform documentation. https://docs.lexis.tech. [Online; accessed 22-March-2024].

[40] Py4lexis. https://opencode.it4i.eu/lexis-platform/clients/py4lexis. [Online; ac-
cessed 22-March-2024].

[41] Tetsu Iwata, Mustafa Khairallah, Kazuhiko Minematsu, and Thomas Peyrin. Romulus v1.2. NIST
Lightweight Cryptography Project, 2019.

[42] Jérémy Jean, Amir Moradi, Thomas Peyrin, and Pascal Sasdrich. Bit-Sliding: A Generic Technique for
Bit-Serial Implementations of SPN-based Primitives - Applications to AES, PRESENT and SKINNY. In
Cryptographic Hardware and Embedded Systems - CHES 2017 - 19th International Conference, Taipei,
Taiwan, September 25-28, 2017, Proceedings, pages 687–707, 2017.

[43] Monica Lam. A Systolic Array Optimizing Compiler. The Kluwer International Series in Engineering and
Computer Science. Kluwer Academic Publishers, Norwell, Massachusetts, 1989.

[44] Da Lin, Zejun Xiang, Xiangyong Zeng, and Shasha Zhang. A framework to optimize implementations of
matrices. In Kenneth G. Paterson, editor, Topics in Cryptology - CT-RSA 2021 - Cryptographers’ Track at
the RSA Conference 2021, Virtual Event, May 17-20, 2021, Proceedings, volume 12704 of Lecture Notes
in Computer Science, pages 609–632. Springer, 2021.

[45] Alexander Maximov and Patrik Ekdahl. New circuit minimization techniques for smaller and faster AES
sboxes. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2019(4):91–125, 2019.

[46] Alfred J Menezes, Paul C Van Oorschot, and Scott A Vanstone. Handbook of applied cryptography. CRC
press, 2018.

[47] Marco Minutoli, Vito Giovanni Castellana, Antonino Tumeo, Marco Lattuada, and Fabrizio Ferrandi. En-
abling the high level synthesis of data analytics accelerators. In Proceedings of the Eleventh IEEE/ACM/I-
FIP International Conference on Hardware/Software Codesign and System Synthesis, CODES ’16, New
York, NY, USA, 2016. Association for Computing Machinery.

[48] Raul Murillo, Alberto A. Del Barrio, Guillermo Botella, and Christian Pilato. Generating posit-based
accelerators with high-level synthesis. IEEE Transactions on Circuits and Systems I: Regular Papers,
70(10):4040–4052, 2023.

D3.2 - Data management techniques: final version 45

http://www.ecrypt.eu.org/stream/p3ciphers/grain/Grain128_p3.pdf
http://www.ecrypt.eu.org/stream/p3ciphers/grain/Grain128_p3.pdf
http://www.ecrypt.eu.org/stream/p3ciphers/grain/Grain_p3.pdf
http://www.ecrypt.eu.org/stream/p3ciphers/grain/Grain_p3.pdf
https://github.com/It4innovations/HEAppE
https://opencode.it4i.eu/lexis-platform
https://docs.lexis.tech
https://opencode.it4i.eu/lexis-platform/clients/py4lexis


http://www.everest-h2020.eu

[49] Christof Paar. Implementation options for finite field arithmetic for elliptic curve cryptosystems. The 3rd
workshop on Elliptic Curve Cryptography, (October 1999).

[50] Stephanie Soldavini, Donatella Sciuto, and Christian Pilato. Iris: Automatic generation of efficient data
layouts for high bandwidth utilization. In Proceedings of the 28th Asia and South Pacific Design Automation
Conference (ASP-DAC), page 172–177, 2023.

[51] David B. Thomas. Templatised soft floating-point for high-level synthesis. In 2019 IEEE 27th Annual
International Symposium on Field-Programmable Custom Computing Machines (FCCM), pages 227–235,
2019.

[52] Serge Vaudenay. Security flaws induced by CBC padding - applications to ssl, ipsec, WTLS ... In Lars R.
Knudsen, editor, Advances in Cryptology - EUROCRYPT 2002, International Conference on the Theory
and Applications of Cryptographic Techniques, Amsterdam, The Netherlands, April 28 - May 2, 2002,
Proceedings, volume 2332 of Lecture Notes in Computer Science, pages 534–546. Springer, 2002.

[53] Hongjun Wu. Hc-128. eSTREAM, ECRYPT Stream Cipher Project Report, 2006. http://www.ecrypt.
eu.org/stream/p3ciphers/hc/hc128_p3.pdf.

D3.2 - Data management techniques: final version 46

http://www.ecrypt.eu.org/stream/p3ciphers/hc/hc128_p3.pdf
http://www.ecrypt.eu.org/stream/p3ciphers/hc/hc128_p3.pdf

	Executive Summary
	Introduction
	Data Management Techniques
	Data Allocation and Storage
	Memory-related optimizations
	Storage of Data at Cluster Level

	Data Processing and Communication
	VMs guests-host (PCIe virtualization) communication extensions
	Data management techniques for the cloudFPGA platform
	Data management techniques for Xilinx Alveo accelerators
	HLS data management techniques
	Inter-Node and Inter-Cluster communication

	Data Protection
	Anomaly Detection

	Cryptographic Libraries for Data Protection
	Architectures
	Cryptographic Primitives: Block Ciphers
	Cryptographic Primitives: Stream Ciphers
	Cryptographic Primitives: Authenticated Encryption


	Conclusion
	References

