
http://www.everest-h2020.eu

dEsign enVironmEnt foR Extreme-Scale big data
analyTics on heterogeneous platforms

D2.5 — Refined Definition of Language
Requirements

The EVEREST project has received funding from the European Union’s
Horizon 2020 Research & Innovation programme under grant agreement
No 957269

http://www.everest-h2020.eu

Project Summary Information

Project Title dEsign enVironmEnt foR Extreme-Scale big data analyTics on heterogeneous
platforms

Project Acronym EVEREST

Project No. 957269

Start Date 01/10/2020

Project Duration 42 months

Project Website http://www.everest-h2020.eu

Copyright
© Copyright by the EVEREST consortium, 2020.

This document contains material that is copyright of EVEREST consortium members and the Euro-
pean Commission, and may not be reproduced or copied without permission.

Num. Partner Name Short Name Country
1 (Coord.) IBM RESEARCH GMBH IBM CH

2 POLITECNICO DI MILANO PDM IT

3 UNIVERSITÀ DELLA SVIZZERA ITALIANA USI CH

4 TECHNISCHE UNIVERSITAET DRESDEN TUD DE

5 Centro Internazionale in Monitoraggio Ambientale -
Fondazione CIMA CIMA IT

6 IT4Innovations, VSB – Technical University of Ostrava IT4I CZ

7 VIRTUAL OPEN SYSTEMS SAS VOS FR

8 DUFERCO ENERGIA SPA DUF IT

9 NUMTECH NUM FR

10 SYGIC AS SYG SK

Project Coordinator: Christoph Hagleitner – IBM Research – Zurich Research Laboratory

Scientific Coordinator: Christian Pilato – Politecnico di Milano

The technology disclosed herein may be protected by one or more patents, copyrights, trademarks
and/or trade secrets owned by or licensed to EVEREST partners. The partners reserve all rights with
respect to such technology and related materials. Any use of the protected technology and related
material beyond the terms of the License without the prior written consent of EVEREST is prohibited.

Disclaimer
The content of the publication herein is the sole responsibility of the publishers and it does not nec-
essarily represent the views expressed by the European Commission or its services. Except as
otherwise expressly provided, the information in this document is provided by EVEREST members
"as is" without warranty of any kind, expressed, implied or statutory, including but not limited to any
implied warranties of merchantability, fitness for a particular purpose and no infringement of third
party’s rights. EVEREST shall not be liable for any direct, indirect, incidental, special or consequen-
tial damages of any kind or nature whatsoever (including, without limitation, any damages arising
from loss of use or lost business, revenue, profits, data or goodwill) arising in connection with any
infringement claims by third parties or the specification, whether in an action in contract, tort, strict
liability, negligence, or any other theory, even if advised of the possibility of such damages.

D2.5 - Refined Definition of Language Requirements 2

http://www.everest-h2020.eu

Deliverable Information
Work-package WP2

Deliverable No. D2.5

Deliverable Title Refined Definition of Language Requirements

Lead Beneficiary TUD

Type of Deliverable Report

Dissemination Level Public

Due Date 31/01/2023

Document Information
Delivery Date 31/03/2023

No. pages 34

Version | Status 0.4 | Final

Responsible Person Jeronimo Castrillon (TUD)

Authors
Jeronimo Castrillon (TUD), Felix Suchert (TUD), Jakub Beránek (IT4I), Karl Friebel
(TUD), Martin Šurkovský (IT4I), Serena Curzel (PDM), Christian Pilato (PDM),
Dionysios Diamantopoulos (IBM), Burkhard Ringlein (IBM)

Internal Reviewer Francesco Regazzoni (USI)

The list of authors reflects the major contributors to the activity described in the document. All EVEREST
partners have agreed to the full publication of this document. The list of authors does not imply any claim of
ownership on the Intellectual Properties described in this document.

Revision History
Date Ver. Author(s) Summary of main changes

12.10.2022 0.1 Jeronimo Castrillon
(TUD) Created using some basic information from D2.2.

06.12.2022 0.2 Jeronimo Castrillon
(TUD) Ported from D2.2 and distributed tasks.

03.01.2023 0.3 Jeronimo Castrillon
(TUD) Adapted tables.

30.01.2023 0.4 Jeronimo Castrillon
(TUD) and others Finished updates to Sections 3–7.

Quality Control

Approved by Internal Reviewer 23/03/2023
Approved by WP Leader 31/03/2023
Approved by Scientific
Coordinator 31/03/2023

Approved by Project
Coordinator 31/03/2023

D2.5 - Refined Definition of Language Requirements 3

http://www.everest-h2020.eu

Table of Contents

1 Executive Summary 5
1.1 Structure of this Document . 6
1.2 Related Documents . 6

2 Introduction 7

3 Use Case Analysis 8
3.1 Air Quality Monitoring . 8
3.2 Renewable-Energy Prediction . 9
3.3 Traffic Modelling . 9

4 Workflow Distribution and Parallelization 10
4.1 Problem Description . 10
4.2 Requirements . 10

5 Kernel Computations 12
5.1 Problem Description . 12
5.2 Requirements . 13

5.2.1 Contextual Requirements . 13
5.2.2 Application Requirements . 14
5.2.3 Requirements for ML Inference . 14

5.3 Challenges . 14

6 Hardware Design Considerations 16
6.1 HLS Problem Description . 16
6.2 HLS Challenges . 16
6.3 Field Programmable Gate Array (FPGA)-based Target Platform 17

7 Use Case and Framework Requirements 19
7.1 Summary: Properties of the Use Cases for Programming Support 19
7.2 Requirements . 19

7.2.1 Overall Envisioned Flow . 21
7.2.2 Requirements: Orchestration Large Application Flows (DAGs) 23
7.2.3 Requirements: Language and Compiler . 24
7.2.4 Requirements: High-level Synthesis and Memory Design 27
7.2.5 Requirements: Autotuning and Virtualized Environment 30
7.2.6 Requirements: Use Case Providers . 32

8 Conclusions 33

References 34

D2.5 - Refined Definition of Language Requirements 4

http://www.everest-h2020.eu

1 Executive Summary

The EVEREST project aims to design a platform for implementing big data applications with both high perfor-
mance and edge workloads following a data-driven model. With the goal of designing the programming inter-
face for this envisioned platform, we studied the use cases of the EVEREST project. This document provides
an updated report on the results of this study and lists requirements on languages and tooling to be developed
for the EVEREST programming framework. Together with the application requirements reported in Deliverable
D2.1 and Deliverable D2.4 and the data requirements formulated in Deliverable D2.3 and Deliverable D2.6,
they define the work on the EVEREST design environment to be done in work packages 3-6. Therefore, these
deliverables are closely linked and were carefully checked for consistency. Despite the many links between,
e.g., the language and application requirements, we attempted to make the three documents self-contained
and easy to read. Therefore, some basic requirements are stated in several deliverables. Cross-linking all of
them would make the individual documents unreadable.

We observe two different major workload types in the use cases. The first type is characterized by single-
location heavy computational workload (e.g., weather simulations, or machine learning). The second type cor-
responds to computation distributed across loosely coupled systems, like data acquisition tasks. The highest
potential gain achievable by specialized language support is exhibited by the heavy computational workloads
that directly profit from the novel heterogeneous node architecture of the EVEREST platform. We thus pro-
pose a custom tool flow with tailor-made domain-specific abstractions coupled with runtime components which
enables us to achieve high interoperability and retargetability at a low cost to users of existing code bases. In
addition, to unlocking the potential of EVEREST nodes, we consider language support for coordination tasks
to better support the second type of workload. We describe how the proposed language support and associ-
ated tooling integrates with existing code bases and development environment. To accomplish this, we derive
requirements on the different tools and system software of the EVEREST programming framework, including
compilers, runtime auto-tuner, runtime system and high-level synthesis tools.

This deliverable represents an update to the initial requirement analysis reported in Deliverable D2.2. Major
changes are:

• Section 3: Minor changes to reflect new information on the use cases. Further details are provided in
Deliverable D2.4.

• Section 4: More information about the traffic-use case and its components. Better role definition for
the programming language and the requirements for task management in HyperQueue. This resulted
in minor modifications to the previous requirements and three new requirements on the language and
compiler (REQ3.12 - REQ3.14) in Table 5.

• Section 5: With the more precise definition of the traffic use case, the problem description for multiple
parallel inference models is clearly stated. The interchange format for Machine Learning (ML) models
has been also fixed and extensions needed to represent quantized models were identified. Moreover,
the radiation module in weather simulations is better understood and thus more precise requirements
were derived for the Domain-Specific Language (DSL) and associated high-level compiler. We added
the Helmholtz operator from fluid dynamics to steer the requirements on the toolflows with a more self-
contained yet challenging numerical kernel.

• Section 6: as a consequence of data requirements being better understood, this section now more clearly
specifies how High-Level Synthesis (HLS) tools need to account for large data sets and module interfac-
ing, and what new tools on top of HLS flows need to support to feed data to hardware accelerators. This
changes led to minor modifications to the previous requirements in Table 6. While the bandwidth be-
tween the HPC compute nodes and on the bus-interfaces between the CPU and the FPGA-accelerators
within the compute nodes is important, the ability to coherently access address memory across the CPU
and accelerator complex was not identified as an important element during the analysis of the use-cases.
Furthermore, the OpenCAPI interface, which we were planning to use to link the FPGAs to the CPUs did
not achieve the wide-spread adoption we were expecting at the time of writing the proposal. Therefore,
the EVEREST consortium decided to implement the FPGA-accelerated HPC system that will be used

D2.5 - Refined Definition of Language Requirements 5

http://www.everest-h2020.eu

to demonstrate acceleration of the weather codes based on standard PCIe-attached FPGA-accelerator
cards (Xilinx Alveo). Our proactive decision at the early stages of the project was confirmed recently,
when the OpenCAPI consortium agreed to transfer all OpenCAPI consortium assets to the CXL Con-
sortium [6]. With the new focus on PCIe-attached FPGA cards, EVEREST is well positioned to adopt
CXL-attached devices with support for coherency once they become available.

• Extra-functional information: Deliverable D2.2 included a section (Section 7) which discussed possible
ways to capture extra functional constraints. More concretely, we considered how to represent (1) timing
constraints for real time execution, (2) energy efficiency, and (3) data security. Real-time execution was
not relevant to the use cases, so it is not included in this document. The discussion about energy
efficiency in this requirements document was ill-placed. Execution metrics, in general, are discussed in
Deliverable D2.4. Similarly, data considerations are discussed in Deliverable D2.6.

1.1 Structure of this Document

Section 2 first introduces the overall aim of the EVEREST project. Section 3 breaks down the use cases
of the project to identify functionality that could profit from domain-specific optimizations and hence should be
supported by the EVEREST programming framework. Part of this analysis looks for libraries and code sections
that are shared between the use cases. In Section 4 and Section 5, functional requirements for the language
abstractions to be developed are analyzed and discussed. Section 6 refers to the requirements considerations
related to the FPGA experimental research platforms of EVEREST. Section 7 provides a detailed requirement
analysis on the different components of the EVEREST programming framework. Finally, Section 8 concludes
this report.

1.2 Related Documents

This report is closely related to:

• D2.1 - Definition of the Application Uses Cases,

• D2.3 - Definition of data requirements,

• D4.1 - Definition of the compilation framework (M9),

• D2.4 - Refined definition of application uses-cases (M24),

• D2.6 – Refined definition of data requirements (M24).

D2.5 - Refined Definition of Language Requirements 6

http://www.everest-h2020.eu

2 Introduction

The EVEREST project will implement a platform for heterogeneous, distributed, scalable, and secure High-
Performance Big Data Analytics (HPDA). The design of a programming framework and the underlying pro-
gramming abstractions take a key role in this undertaking. Providing designers with widely platform-agnostic
development tools that can perform meaningful optimizations on the code poses a unique challenge. These
tools should seamlessly integrate into current development flows, requiring minor changes to established prac-
tices.

The development of the platform and programming framework is driven by three industry-relevant use
cases, namely renewable-energy prediction, air-quality monitoring, and traffic modeling. Apart from the
high societal relevance of these use cases, they are excellent representatives of HPDA, combining challenging
high-performance computing, machine learning (ML) modeling, and state of the art algorithms for decision
making. Given the use case heterogeneity, established programming practices differ across the different do-
mains. This makes it even more challenging to design and implement a seamless programming framework.

This report summarizes the requirements for language abstractions and the programming framework as a
whole. We start by introducing the use cases in more detail, extracting important underlying computational
patterns that can profit from language and compiler support. One such pattern are HPC and ML kernels,
common to the different use cases as well as the coordination and workflow aspects of the applications. These
aspects will steer the development of the big data framework and associated language abstractions by means
of dataflow models. We also describe extra-functional constraints that have to be respected for the different use
cases. Finally, we list identified requirements for the different components of the use cases and the EVEREST
programming framework.

D2.5 - Refined Definition of Language Requirements 7

http://www.everest-h2020.eu

3 Use Case Analysis

The EVEREST platform will support applications that process large amounts of data in a distributed setting.
In order to better understand the requirements and find optimization potential in such applications, we first
analyze the use cases of the project to identify common bottlenecks and aspects that can profit from language
support.

This section briefly discusses the three use cases, highlighting aspects relevant for the design of the pro-
gramming framework. A more detailed presentation of the use cases can be found in Deliverable D2.1 and
Deliverable D2.4 . All use cases are at different levels of maturity, as is explained in detail in the aforementioned
documents.

3.1 Air Quality Monitoring

Industrial plants that emit pollution are naturally subject to strict regulation defining acceptable levels of air
quality which must be met. But depending on the weather situation, the emission dissipation greatly varies.
This use case intends to provide local monitoring of the air quality and weather on site to help regulating the
pollution produced by a plant accordingly. Weather data is analyzed and used to produce a local weather
forecast for a 10km radius around pollution sources. The resulting information will then be combined with
machine learning approaches to assist in deciding whether or not to postpone emission-heavy activities at the
industrial site.

Figure 1 – Air quality monitoring use case flow

The overall structure of this use case is shown in Figure 1. It combines different functions with different
computational requirements and computational patterns, executed across multiple sites and systems. The
largest and computationally most intense aspect of this application is the generation and simulation of the
weather model using the WRF model. It consists of many different kernels computing and simulating the differ-

D2.5 - Refined Definition of Language Requirements 8

http://www.everest-h2020.eu

ent facets that influence weather phenomena such as cloud movement and radiation. Due to the impact these
kernels have on the computation time of the application, the WRF model is a key component for acceleration.
Given the experience of the partners in DSLs for Computational Fluid Dynamics (CFD), these kernels will serve
as initial target for DSL design. From appropriate abstractions, compilers can be designed/extended in WP4
that lower the code to multi-core computing nodes with and without FPGA acceleration.

3.2 Renewable-Energy Prediction

To better harvest the potential of Renewable Energy sources, this application will provide a predictive model
to forecast upcoming weather events that may influence the energy production from renewable sources. It
will analyze real-time weather data and generate a high-resolution weather model that can produce highly
localized weather forecasts hourly or sub-hourly. Artificial intelligence methods will then be used on the output
generated by the weather model to estimate possible productions by renewable energy sources.

Like the Air Quality use case, this application is mainly built around a weather model to generate forecasts.
Kernel optimization for the model will thus benefit this use case as well.

3.3 Traffic Modelling

The main goal of this use case is to optimize traffic flows within cities to reduce congestion and travel times,
which in turn can help reducing the pollution caused by traffic. Based on both historical and real-time traffic
data, a traffic simulation is run in conjunction with a prediction model to allow the forecasting of high-congestion
scenarios and route the traffic accordingly when routes are requested.

This use case consists of several interconnected workflows that together form a larger application, as shown
in Figure 2. The workflows such as Map Matching, Traffic simulation, Traffic prediction inference and Intelligent
routing contain kernels that can profit from performance improvements brought by the use of custom domain-
specific abstractions. By using higher-level abstractions, it will be possible for these kernels to transparently
leverage the compute efficiency of accelerators implemented on the reconfigurable fabric of the EVEREST
nodes. Apart from kernels, this use case requires orchestration of the individual workflows, which are either
streaming-based or pure batch processing, especially the Traffic Simulator.

Figure 2 – Outline of the traffic simulation use case

In the next sections we will discuss the specific challenges posed by the use cases. In order to make
solutions to these challenges widely applicable within the EVEREST framework, we will abstract from the
specific issues, focusing on generalizable solutions.

D2.5 - Refined Definition of Language Requirements 9

http://www.everest-h2020.eu

4 Workflow Distribution and Parallelization

As outlined in Section 3, the different use cases of the EVEREST project are large-scale applications that
would benefit from distributed and parallelized execution on multiple levels. Within the use cases, WRF is a
traditional High-Performance Computing (HPC) application with a well-understood distributed execution model.
This section thus focuses on parallelization and large-scale distribution for other workflows, namely, the traffic
simulator, map matching and inference.

4.1 Problem Description

The traffic use-case consists of several components, which have different requirements and potential for being
accelerated by distributed computation.

• Traffic Simulator The traffic simulator component is used to generate large amounts of data by executing
simulations of cars travelling within various cities. This data is then used as an input dataset for training
traffic modelling neural networks. Due to the nature of the service, fast data processing is required to
deliver timely results which can be used to react to current circumstances in the field.

On a coarse-grained, workflow orchestration level, it will be required to execute many individual instances
of the traffic simulator, with various parameters and cluster configurations (varying node counts, leverag-
ing only CPU nodes or also FPGA-accelerated nodes etc.).

Within each traffic simulator workflow, computation should also be distributed, on a more fine-grained
level. Within each iteration of a batch of cars whose movement should be simulated, it is required to
compute a set of alternative potential routes for each car and then perform a Monte Carlo simulation to
evaluate these routes. Since both alternative route finding and the probabilistic Monte Carlo simulations
can be computed in an embarrassingly parallel fashion for each car, they will be computed in parallel on
multiple nodes.

• Map Matching This component receives a stream of Floating Car Data (FCD) and performs a road speed
inference operation on disjoint subsets of the stream, belonging to short and anonymous trajectories of
individual cars.

While the main map matching kernel is computationally intensive and not easy to distribute to multiple
nodes (instead, it should benefit from FPGA acceleration), the FCD stream can be split into disjoint parts
and sent to multiple nodes, which will then execute the kernel independently of other nodes.

• Neural Network Inference The inference component of the traffic use-case should be able to perform
thousands of inferences per second in a high-throughput mode. A challenging factor here is that there
is no single machine learning model. Instead, separate models are needed for different roads within a
city, and thus at any given time there might be tens of thousands of models that have to be ready to
perform inference. There are nontrivial costs associated with (re-)loading the models’ weights into CPU
(or FPGA) memory if they cannot all fully fit there.

The main metric to improve is the throughput in terms of inferences per second. We expect FPGAs to
greatly contribute to speeding up the inference process. To further improve throughput, batches can be
created and distributed among nodes at the cost of a higher latency. The language and the tooling should
allow exploring this trade-off.

4.2 Requirements

HyperQueue, an HPC-oriented task runtime system, will be used to describe and execute coarse-grained work-
flows in a batch fashion. While it can already be used to execute task graphs and workflows on a distributed
cluster, it has to be extended to accommodate the needs of the traffic simulator use-case. It will require the
specification of fine-grained resource requirements for each executed workflow, especially focused on selecting
which tasks require the use of an FPGA. This information should be then taken into account by HyperQueue in
D2.5 - Refined Definition of Language Requirements 10

http://www.everest-h2020.eu

order to optimally schedule the workflow on a heterogeneous cluster. Since some of the individual workflows
might be using intra-job parallelization across multiple nodes, HyperQueue should also improve its support for
scheduling and working with multi-node jobs.

To distribute fine-grained computation in the individual components of the traffic use-case, an appropriate
framework, named EvKit1 will be developed within EVEREST. The distribution should be done by splitting
computing to multiple stateless worker nodes that will not share any data using a gather/scatter pattern. To
improve load balancing, a message queue might be used to allow balancing the individual computational
requests across multiple workers and also to allow adding and removing computational workers dynamically,
without affecting the executing workflow.

The computation of alternative routes and/or the Monte Carlo simulation should be accelerated by FPGAs.
EvKit should include support for offloaded computational kernels to FPGAs attached to host CPUs. It should
also be extended with support for auto-tuning (using the mARGOt [4] auto tuner), to efficiently select which
kernels should be executed on CPU or FPGAs, and also to decide which version of an FPGA kernel should be
used to achieve maximal efficiency. These extensions will benefit the traffic simulator, the map matching and
potentially also the neural network inference components of the traffic use-case.

To facilitate the integration of FPGAs kernels into individual components, the Ohua [3, 2] framework will
serve as an abstraction layer for expressing heterogeneous programs. This shall additionally allow leveraging
existing dataflow graph optimizations in the frameworks’ compiler. Within EVEREST, the compiler framework
will be extended to generate interfacing code for communicating with offloaded kernels running on an accelera-
tor. Furthermore, dataflow graph transformations need to consider hardware restrictions for offloaded kernels.
SDK integration will require adapting input and output formats used by the compiler from high-level languages
like Rust to intermediate languages in Multi-Level Intermediate Representation (MLIR).

1More about EvKit in Deliverable 5.2 Sec. 2.1.

D2.5 - Refined Definition of Language Requirements 11

http://www.everest-h2020.eu

5 Kernel Computations

As outlined in Section 3, air quality modeling and renewable-energy prediction heavily rely on the WRF weather
model. In general, most of the computational power required by these applications is spent solving differen-
tial equations using numerical methods. Due to the strong coupling of these methods in WRF, we added the
Helmholtz decomposition use case to EVEREST to be able to show this for a fluid dynamic application on a
manageable scope. Apart from CFD, WRF also models microphysical and -chemical processes that particu-
larly computationally intensive, such as radiative transfer. For the traffic simulation use case, particle-based
simulations were thought to be an option at proposal writing time. As already mentioned in Deliverable D2.2,
particle-based abstractions were not deemed necessary after an analysis of the use cases and are not treated
in this document. In addition to physics simulation, all the three uses cases of the EVEREST project use simu-
lation data to drive machine learning algorithms. Such algorithms are dominated by linear algebra operations
that have often been shown to lend themselves to acceleration.

Kernels in physic simulations or machine learning can be conceptually connected within a dataflow graph.
This allows applying optimization techniques on the kernels themselves without needing to consider the whole
application. The kernels we find in these applications can be interpreted as subsets of general tensor alge-
bra. This view is often closer to their actual physical or mathematical formulation, also allowing them to be
significantly more terse. These descriptions can also carry crucial expert knowledge about the problems they
encode, which is lost in lower-level programming languages. This enables more impactful abstract transfor-
mations as oppose to structure-oblivious standard optimizations. Our use cases shall profit from specialized
language and compiler support for these numerical stencils and general linear algebra kernels.

The rest of this section further explains optimization potential in the kernels that underlie the WRF model
and the traffic simulation machine learning algorithms, as they provide our most common form of expert knowl-
edge. For these kernels, we apply tensor optimizations that are widely discussed in the literature, in addition
to EVEREST platform-specific transforms.

5.1 Problem Description

The Weather Research and Forecasting Model (WRF) [11] is a program for producing climate predictions and
weather forecasts. It is an integral component in at least two of the three use cases of this project and is
also used worldwide, making the contributions within EVEREST impactful beyond the project itself. The model
code has a modular structure, allowing different components to be enabled and used as necessary. Each
module concerns itself with a different aspect of a weather simulation, like cloud generation and movement,
microphysics phenomena, or radiation calculations. These kernels are then called in regular intervals during
the simulation, allowing them to update their respective model parameters. Depending on the complexity of
the numerical computations done within the kernel, the execution times for the modules vary.

As a result, modules that take especially long to execute, most prominently the cloud movement, radiation
and microphysics modules, are updated less often to improve latency. This has the side-effect of yielding
less accurate data, as certain variables in the model are only accurate with respect to long-term trends. In
practice, this leads to the simulation failing to capture weather phenomena associated to highly spatio-temporal
processes, such as convection resulting in thunderstorms. Accelerating these complex modules is a key goal
within EVEREST, partly because it opens up new possibilities for the project’s use cases.

Augmentation or outright replacement of simulation elements in Weather Research and Forecasting (WRF)
is only feasible at the driver level, which are decoupled subprograms with fixed interfaces. In EVEREST, we
have decided to focus on the radiation driver Rapid Radiative Transfer Model for GCM Solvers (RRTMG), as
it constitutes a significant portion of the runtime and coupling complexity, but is otherwise an ordinary tensor
program. In this context, we are also able to compare against other state-of-the-art solutions, and bring their
algorithmic improvements back to WRF.

Traffic modeling starts with the big data collection of FCD from mobile devices. These raw data records
are map-matched to compute reference speeds on road segments for multiple time instances along a day.
The processing of one day data (e.g. 20 million records for Prague) takes up to 4 hours on CPU 2-core

D2.5 - Refined Definition of Language Requirements 12

http://www.everest-h2020.eu

architectures. We target the execution duration under 1 hour while being energy efficient too. The GPS-
projection, Dijkstra and Viterbi forming Hidden-Markov chain calculation has been identified as the bottleneck
and thus the candidate for the kernel to be optimized.

The road speeds enter traffic simulator, which runs simulation mimicking the whole day dynamics aligned
with the measurement data. In a nutshell it refines road speed data as well as it boosts information on weakly
covered road segments the result of which is macroscopic traffic view on a city as well as training sequences
for prediction calculation for major roads (e.g., 10,000 road models in Prague). The day dynamics simulation
(on average 50,000 vehicles) takes approximately 20 hours, so the acceleration is needed as our target is to
have this calculation done overnight (up to 4 hours).

Traffic management service relies on a large number of predictions of traffic for individual road segments.
The predictions for each segments are computed individually using neural network models. To predict the traffic
for a given time period for complete cities, inferences of on average 10.000 (depending on a size of a city) road
segment models are required, which takes more than 1 minute on 2-core CPU architectures. Therefore, it is
important to accelerate this inference calculation to provide traffic prediction for smart routing within seconds
to become usable.

5.2 Requirements

In order to improve the execution time of computational kernels, the numerical computations they encompass
could be described at a higher abstraction level. Similar work has been done for Computational Fluid Dynamics
calculations in the past by members of the project [10, 12]. By using a high-level DSL, the compiler has more
semantic information about the kernel, enabling data layout transformations and loop schedules that are no
longer evident coming from lower-level languages like C or Fortran. In the context of this project, existing DSL
abstractions are being extended to support the RRTMG algorithm. Furthermore, the compiler is targeted to
generate code for the EVEREST platform, which includes both for multi-core CPUs and FPGAs.

We divide the requirements for the language into two. First, we discuss how the domain-specific abstrac-
tions can be embedded into the use case code (embedding, cf. Figure 3). We then discuss requirements on
the abstraction itself (mapping, cf. Figure 3). Finally, we briefly discuss requirements to express ML kernels,
an issue that is already well supported in ML frameworks.

5.2.1 Contextual Requirements

Standalone DSLs can provide great performance improvements. In reality, they must seamlessly integrate with
the development environment and respect constraints imposed by the surrounding code. This includes code
surrounding the kernel itself (e.g., in Fortran or Python) and other components of the programming stack, such
as the language runtime, the operating system and the virtualization layer (from WP5). More concretely:

• The language provides a canonical interface that is interoperable with the Fortran ISO C binding. The
DSL and compiler must represent and generate code for a subset of Fortran memory layout compatible
data structures and calling conventions.

• The user must be able to introduce customization points in the original code base. The toolchain should
assist the user in doing so through the use of a C preprocessor based mechanism. It must also provide a
facade that can be integrated into a typical Unix build system, such as Make, that unobtrusively augments
the existing build system.

• In heterogeneous implementations, memory transfers are often needed, most commonly at the point
where execution forks to a different device. The language should use abstractions that allow the compiler
to automatically insert such transfers. This should to a large extent be transparent to the programmer.

It is of high importance that these requirements leave the toolchain with as much freedom to implement
a kernel as possible, opening up more opportunities for optimization. This includes mapping decisions of

D2.5 - Refined Definition of Language Requirements 13

http://www.everest-h2020.eu

computations to cores, threads and FPGA overlays as well as data to memories. Consequently, a contextual
requirement for the DSL is to be platform agnostic. It should avoid asserting particular target devices or
programming language that it is embedded in. Retargeting within the compiler should account for platform
specific optimizations.

5.2.2 Application Requirements

Defining and implementing a DSL is always a choice made based on the observation that there exists a divide
between the way requirements and goals are laid out in the application domain as opposed to the actual
implementation in some more general programming language. What should and should not be part of a DSL
depends on how much of the whole application is deemed relevant. Given the use case, this yields the following
application-specific requirements:

• The DSL must have first-class support for expressing the mathematical expressions that make up our
target application domain. For numerical simulations of differential equations, the language should sup-
port linear and tensor algebra. Support for stencil operations is also required, i.e. it must provide a full
linear algebra abstraction. These can be divided into the following categories:

– Element-wise arithmetic
(add, sub, mul, div, mod)

– Index reassociations
(diag, transp, proj)

– Regular constructors
(stack, expa, pad, rep)

– Fundamental operators (prod, red)

– Complex operators (contr, conv)

• The DSL will be implemented on top of the MLIR framework, as a plug-in dialect. Domain-specific op-
timizations will be provided as part of a tensor program dialect created within this project, placed in the
DSL lowering chain. Hardware-specific transforms and concepts, such as offloading and runtime man-
agement, will also be provided as MLIR dialects, independent of the DSL. This separation shall enable
the reuse of existing MLIR abstrations to support additional workloads and optimizations. Lowerings to
LLVM-IR will be provided, which allows targeting CPUs and FPGAs via the Bambu synthesis tool.

In essence, the chosen mapping of domain-to-language elements should provide a considerable benefit to
the user over an implementation in a non-specialized language. This can be achieved through adopting more
concise notations, reducing the amount of boilerplate code and ambiguity. To improve performance and other
execution metrics, the compiler must be made aware of application specific and expert knowledge through the
language.

5.2.3 Requirements for ML Inference

One key aspect for EVEREST is the interoperability with existing standards. Therefore we use existing DSLs
where applicable. High-level operator abstractions are an established practice in the ML domain, where the
Open Neural Network eXchange (ONNX) community standard is widely used. Depending on the details of the
use case, it may be required to extend ONNX with support for quantized data types.

5.3 Challenges

One of the key challenges in transforming kernels of numerical simulations will be the stability of the result. In
the past, there were attempts to employ Advanced Vector Extensions 2 in WRF computations to improve the
execution time. This, however, led to highly unstable results and possibly also in numerical code crashes at
seemingly random times, with errors not reproducible at the same times, which were attributed to the accumu-
lation of floating point inaccuracy. Hence, special care must be taken when optimizing floating point operations
in kernels, e.g. by comparing the results produced against unoptimized execution results or another form of
D2.5 - Refined Definition of Language Requirements 14

http://www.everest-h2020.eu

Figure 3 – Requirement factors for the Kernel DSL

gold standard. Other forms of validation that warrant a physical interpretation could also be aided by a DSL
compiler, though most responsibility is left with the user. Methods for symbolic analysis of error propagation
should be also considered.

Another challenge will be the integration of the DSL into the existing Fortran compilation flow to ensure
that the code produced will link seamlessly to the rest of the WRF model. This includes integration with the
runtime system, mapping data and synchronizing data transfers. The latter questions will be dealt with in a
future report, once the hardware platform, the virtualization environment and the interfaces are more precisely
described.

In addition to being reconfigurable, some drivers in the WRF model greatly vary with the evolution of runtime
variables. The EVEREST framework should include provisions to adapt to the application workload. The com-
piler, in particular, should at least be able to produce different variants of the code to enable runtime selection.
Should this be insufficient, code generation at runtime in a “Just in Time” manner will be considered. In this
case, the overhead of just-in-time compilation and synthesis should be constrained so as not to considerably
impact the overall application execution time.

For the ML kernels, there exist two major challenges: The first is the expression for custom data types,
especially different floating and fixed point formats. This is important to improve the efficiency and latency of
the accelerated kernels. At the same time, the accuracy of these kernels is very sensitive to details of the
used data type. Here, it is challenging to express the necessary details at a high level, so that the application
developer can interact with this description, while support the derivation of the optimal low level details during
compilation of the accelerated kernels. This aspect becomes more difficult due to the fractured landscape of
data type formats and representations currently used in the community. Here, EVEREST will find a unified
expression that suits the use case but also fits to the wider ecosystem and the different involved compilation
and synthesis tools. More information on data formats can be seen in Deliverable D2.6.

The second challenge is the expression of scaling and dynamic scheduling of the ML kernels. For the traffic
prediction use case, a complete model could contain more than 5 billion parameters. But for typical inference
requests only a subset of one model is needed to calculate the prediction. Here, a efficient yet practical way to
express this dynamic dependencies need to be found.

D2.5 - Refined Definition of Language Requirements 15

http://www.everest-h2020.eu

6 Hardware Design Considerations

6.1 HLS Problem Description

FPGAs are increasingly becoming an attractive alternative target, providing valuable efficiency tradeoffs. One
key opportunity afforded by reconfigurable devices is the possibility to continuously adapt the accelerator ar-
chitectures to new algorithms, models, and iteratively provide optimizations without the need to change the
device, coping with the exponential growth of algorithmic research in the area. However, a significant limitation
in using FPGA devices is the requirement to develop the architectures in low-level hardware design languages
(such as Verilog or VHDL), which is complicated and time-consuming. Traditional software languages allow
the description of sequential instructions that do not depend on the low-level hardware implementation, while
languages such as VHDL or Verilog require a good knowledge about digital design and circuits to produce effi-
cient results. Expecting use case developers to follow the design of an application from the algorithm definition
down to the FPGA programming is not realistic.

For these reasons, a more suitable approach for the acceleration of complex applications on FPGAs is to
exploit HLS. HLS is a process that automatically translates high-level descriptions into hardware description
language. The use of HLS tools raises the level of abstraction and automates the most time-consuming step
in the development flow. Instead of manually writing VHDL/Verilog code, the user only needs to provide a
program written in a standard programming language such as C/C++. The Register Transfer Level description
generated by HLS represents an accelerator with standard interfaces that can be integrated in more complex
system-on-chip architectures.

6.2 HLS Challenges

Current HLS tools have been developed mainly to generate efficient accelerators for regular, easily partition-
able, arithmetic-intensive workloads typical of digital signal processing. They target extraction of instruction-
level parallelism (sometimes also of parallel tasks, e.g., through OpenCL annotations) and consider simple
memory subsystems. The synthesis of big data workloads introduces different requirements and challenges
to HLS that will be addressed by EVEREST.

HLS tools typically assume that the generated accelerators will operate on local data that is available in
on-chip memories, considering known and fixed memory access latencies and performing optimizations that
aim to reduce such latencies. As a consequence, they do not adequately serve applications that operate on
large datasets that cannot fit into on-chip memories or even external accelerator memory. Moreover, they
only consider fine-grained memory parallelism, and they do not handle well data-dependent operations, highly
unbalanced parallel activities, or synchronization through atomic memory operations.

HLS-based solutions for optimizing the memory accesses and exploiting coarse-grained parallelism will
make the EVEREST approach amenable to the power efficient execution of workloads with large datasets. In
addition, accelerators will become more efficient with proper optimization of memory accesses and data trans-
fers through custom memory architectures outside the computational logic, using intelligent memory managers
automatically generated with a combination of compiler information and hardware generators. In EVEREST,
this will require both tools for the generation of complete memory architectures to complement existing HLS
methodologies. The interfaces between the accelerators and the rest of the platform (see Section 6.3) will be
based on the Advanced eXtensible Interface (AXI), part of the ARM Advanced Microcontroller Bus Architecture
(AMBA) specifications. Such interfaces allow us to integrate the accelerators generated in EVEREST within
the platforms on the target nodes.

To further improve energy and latency savings, EVEREST will also extend the support for floating-point
computation with variable precision within the HLS flow. For example, in Machine Learning/AI-based tasks,
variable precision operations can reflect different quantization techniques used in deep learning algorithms.

D2.5 - Refined Definition of Language Requirements 16

http://www.everest-h2020.eu

6.3 FPGA-based Target Platform

In the EVEREST project two different major workload types are observed in the use cases, i.e., single-location
heavy computational workloads and distributed workloads in loosely coupled systems. Throughout the project
we are going to selectively decide which processing parts of those workflows can benefit the most from the
specialized language as well as the heterogeneous EVEREST platforms.

Those platforms may feature one or more FPGA devices for hardware acceleration and one or more phys-
ical memories (either local or external to the FPGA), as shown in Figure 4. Such systems will run Linux
as Operating System (OS) and a hypervisor to manage the hardware resources. Note that the EVEREST
approach is not limited to these architectures. In fact, specifying the workflow pipelines at a higher level of
abstraction allows us to easily port the applications to architectures with heterogeneous Graphics Processing
Unit (GPU)-based nodes and end-user embedded devices.

To examine the potential of programmable heterogeneity in EVEREST workflows, we propose the em-
ployment and extension of two state-of-art research platforms that leverage FPGAs in different architecture
configurations. The first is a CPU-managed system that rely on tightly-coupled, bus-attached FPGAs. The
second is an FPGA-disaggregated system that relies on loosely-coupled, network-attached FPGAs.

FPGA device FPGA deviceFPGA deviceFPGA device

Acc

HW
Mem

Mgr.
PCIe
Ctrl.

I/O

MEMMEMDRAM

HBMHBM

FPGA device

Acc

HW Mem
Mgr.

NC

I/O

MEMMEMDRAM

Flash

4 x CPU nodes

I/O MEMMEMDRAM

HBM
48-core CPU

HBM
On-chip AccPCIe gen4

25

Gb/s
x8

100

Gb/s x2

EVEREST Heterogeneous Node
x86 CPU with bus-attached FPGA

EVEREST Node
Network-attached FPGA

TCP/UDP

EVEREST

Computing
Node
CPU

up to 3x per 2U node
(for EVEREST cluster)

up to 64x per 2U node
(cloudFPGA)

TCP/UDP

Acc

10

Gb/s
Dual-port Mellanox
ConnectX-5 100G

NC

TCP/UDP

100

Gb/s

96x

1 x Xilinx Alveo U280
dual slot
PCIe Gen3x16

2xGen4x8, CCIX
32GB DDR4

8GB HBM2
2x QFSP(100GbE)

2 x Xilinx Alveo U55C
single slot
PCIe Gen3x16,

2xGen4x8, CCIX
16GB HBM2
2x QFSP(100GbE)

4 x Supermicro nodes
2 x AMD EPYC Milan 7643P
48 cores, 96 threads

256GB DDR4
2 x 960GB SATA SSD
Dual ConnectX-5 EN 100GbE

96 x Xilinx Kintex XCKU060
64 per 2u node, single slot
16GB DDR4

10GbE

IBM DC NetworkIT4I DC Network

PCIe

Figure 4 – EVEREST experimental heterogeneous platforms

Both those systems abstract the way that the FPGA accelerators are being developed and integrated and
offer high flexibility to the EVEREST consortium to account for interoperability and retargetability of the devel-
oped accelerated solutions to different platforms (even out of EVEREST’s platforms).

This abstraction is enabled by a predefined set of interface requirements. There are mainly two considera-
tions tied to those requirements, a) the interface of the accelerators to the host through a software API and b)
the interface of the accelerators inside the FPGA at the RT-level. Both interfaces are offered by the Integrated
Development Environments (IDEs) of the two platforms, i.e., the Alveo platform for the bus-attached FPGAs
and the cFDK of the cloudFPGA research platform.

As shown in Figure 5, the accelerators in both platforms are interfaced through AXI channels. Both Alveo
platform and cFDK provide a full AXI master bus to communicate with the host via the FPGA Shell. cFDK also
enables AXI-stream based access. Same AXI master buses are used to connect the accelerators to the FPGA
DRAM channels (also High Bandwidth Memory (HBM) for Avleo-based FPGAs).

The Shell logic of both platforms implement all the necessary low-level processing of the Peripheral Com-
ponent Interconnect express (PCIe) and TCP/IP respectively, in order to provide those AXI interfaces. This

D2.5 - Refined Definition of Language Requirements 17

http://www.everest-h2020.eu

way the developers can generate the accelerators with only this interface requirement. Such interfaces are
standardized and commonly used in the FPGA design ecosystem, while they can be generated by HLS tools
with #pragma directives at the function definition level.

On the host software side, the two platforms offer different Application Programming Interfaces (APIs).
The Alveo-platfrom relies on the Xilinx Runtime Libraries and its corresponding PCIe functions (XOCL and
XCLMGMT). On top of them a C/C++ interface is provided and based on that, different language porting can
be done, e.g., Python through a C-to-Python tool (e.g., SWIG, Pybind11 etc.). On the other side, cFDK offers
the seamless connection to any TCP/UDP socket and thus any programming language or library compatible
with sockets can be interfaced directly.

Operating system

XOCL/
XCLMGMT

Process A Application (USER)

Integrated Develoment Environment for bus-attached FPGAs

XRT
Runtime
Libraries

Software on Host

Process B

Alveo Shell

PCIe
TxRx

control

XDMA/
QDMA

mmio

Mail
BoxPCIe gen.3

8GT/s

AXI4

AXI4 FPGA
DRAM

Accelerator 4
Accelerator 5

Accelerator 6

Accelerator 1
Accelerator 2

Accelerator 3

Operating system

C/C++

sys/socket.h

Process A

Secondary

Application (ROLE)

Python

Software on Host

Process B

cF Shell

TCP/UDP
offload
engine

NTS

SHELL

mmio

FSM10Gbps

AXI4 lite

AXI4-MM Primary

Primary AXI4 FPGA
DRAM

Accelerator 4
Accelerator 5

Accelerator 6

Accelerator 1
Accelerator 2

Accelerator 3

AXI4s

. . .
JS

C/C++

Integrated Develoment Environment for network-attached FPGAs

AXI4 FPGA
HBM

Application

Application

Alveo FPGA

cloudFPGA #1
cloudFPGA #N

Figure 5 – Interface requirements for FPGA accelerators a) at the host software side and b) at the FPGA side for both Alveo (top) and cFDK (bottom)

D2.5 - Refined Definition of Language Requirements 18

http://www.everest-h2020.eu

7 Use Case and Framework Requirements

This section summarizes important observations extracted from the use cases that are important from the
point of the view of the programming framework. From these observations we derive general requirements
for the components of the use cases in terms of programmability and interoperability, among other properties.
To account for these properties, we distill requirements for the components of the programming framework
and their interfaces, including language abstractions and annotations, compiler support, runtime support, and
platform support.

7.1 Summary: Properties of the Use Cases for Programming Support

Table 1 describes high-level properties of the use cases as a whole. As can be seen, the use cases represent a
challenging combination of HPDA, HPC and ML components, stressing today and future programming frame-
works. At the higher-level, use cases are distributed across different geographical locations, while requiring
efficient coordination for distributed computing within a site (e.g., via HyperQueue). The use cases are imple-
mented in multiple languages, making language integration an important requirement. As discussed above, all
use cases have components that require batched processing, with traffic modelling requiring both streaming
and batched processing. Similarly, all use cases are time critical, in the sense that results delivered too late
are either irrelevant (e.g., a prediction of something in the past) or can potentially lead to economic costs (e.g.,
in the case of prediction for renewable energies). All three use cases use ML techniques for decision making,
with inference possibly offloaded to the edge.

D
is

tr
ib

ut
ed

M
ul

ti-
lo

ca
tio

n

M
ul

ti-
la

ng
ua

ge

S
tr

ea
m

in
g

B
at

ch

Ti
m

e
cr

iti
ca

lit
y

M
L

co
m

po
ne

nt
s

E
dg

e-
en

ab
le

d

Renewable-energy
prediction X X X X X X

Air-quality monitoring X X X X X X X

Traffic modeling X X X X X X X X

Table 1 – High-level properties of EVEREST use cases

At a finer granularity, use cases have to profit from the novel computing nodes proposed in EVEREST.
This requires a detailed analysis of individual components within the larger workflows. Properties of the main
components are shown in Table 2. These components are selected for being critical for the execution of the
use cases. Unless the envisioned target platform is FPGA, not all of them will take advantage of the Everest
technologies. Less critical components Components not included in the table will receive standard support
by the high-level platform, meaning no special language or framework support to improve execution metrics or
programmability. Table 2 depicts a heterogeneous landscape for tool support, which imposes requirements on
use case providers, language and framework design, and tool interfaces, as will be discussed in the following.
Some of the components are being developed at the time of writing. In this case, we report on what is planned
whenever possible.

7.2 Requirements

EVEREST as a whole contributes to different aspects of system design and programming. Global require-
ments and a detailed representation of the degree to which the requirements should be met for the different
components are presented in Table 3. The table includes the following requirements:

D2.5 - Refined Definition of Language Requirements 19

http://www.everest-h2020.eu

ID Name Lan-
guages

Target
resource

Compute
class Data class

C1 WRF Assimilation Fortran CPU HPC, I/O
bound Regular data

C2 WRF data
preparation Fortran CPU

HPC, I/O &
Memory
bound

Regular data

C3 WRF radiation Fortran CPU,
FPGA

HPC,
compute-
bound

Regular data

C4
WRF cloud
movement and
microphysics

Fortran CPU,
FPGA

HPC,
compute-
bound

Regular data

C5 Energy Production
modeling Python CPU Cloud, Edge Irregular data

C6 AirQuality
modeling Python CPU Cloud, Edge Irregular data

C7 Traffic: Map
matching C++ CPU,

FPGA

Cloud, I/O
and storage
bound

Regular data

C8 Traffic Prediction:
AI Training Python CPU, GPU

HPC,
Compute
intensive

Regular data

C9 Traffic Prediction:
AI inference Python CPU,

FPGA Cloud, Edge Regular data

C10 Traffic: Intelligent
routing (PTDR) C++, Rust CPU,

FPGA HPC, Cloud Irregular data

C11 Traffic simulation Python,
Rust, C++

CPU,
FPGA

HPC,
Compute
intensive

Irregular data

Table 2 – Properties of key components in EVEREST use cases

D2.5 - Refined Definition of Language Requirements 20

http://www.everest-h2020.eu

ID Global
requirement C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

GREQ1 Programmability
GREQ2 Interoperability
GREQ3 Retargetability
GREQ4 Performance
GREQ5 Energy efficiency

Table 3 – Global requirements on key use case components (the darker, the more important the requirement is)

GREQ1 Programmability: End users of the platform should transparently profit from the EVEREST platform.
This means that with minor effort, programmers can have functionality executing on, for instance, an
FPGA without having to write a single line of code in an Hardware Description Language (HDL). Code
modifications include annotations or inserting DSL expressions in existing code. As an example, as dis-
cussed in Section 5, the main numerical components of the WRF model (C3 and C4) will profit from
expression DSLs to automatically create FPGA accelerators for stencils and other linear algebra opera-
tions. Machine learning components (e.g., C5, C6) do not require that much programming support if the
target architecture is not FPGA, since this is already accounted for in machine learning frameworks.

GREQ2 Interoperability: End programmers use different frameworks (cf. Table 2) and languages. For instance,
a learned model must be exported from the framework to be deployed on the platform. This requires
support for standard formats and for clearly defined interfaces within the EVEREST programming frame-
work. Enforcing interoperability is a key challenge for EVEREST, also for collaborating with other ICT-51
projects (see the events driven by BDVA). This will significantly increase the long-term impact of the
EVEREST toolchain.

GREQ3 Retargetability: The EVEREST computing platform scales from the edge all the way to the data center.
Different instantiations of the platform, as well as alternative technological options (e.g., Xilinx FPGAs
and HLS tool flows), have to be supported by the EVEREST programming framework.

GREQ4 Performance: The EVEREST programming frameworks shall help improve the performance of appli-
cations. Naturally, the development will focus on the more performance-critical components of the use
cases from Table 2.

GREQ5 Energy efficiency: Apart from performance, an increasingly important property of systems is the energy
efficiency. By clever use of programmable and reconfigurable resources, the EVEREST programming
environment must have energy efficiency as the second objective.

From these global requirements and the information in Table 1 and Table 2, we distill requirements for
different flows to be implemented in the EVEREST software development kit. The flows and the requirements
are described hereafter. In addition to that, Table 3 has been used also to select the main components of the
use cases to be used for the evaluation phase.

7.2.1 Overall Envisioned Flow

Figure 6 provides an overview of the envisioned EVEREST programming environment. We first discuss the
role of the different components before listing their requirements in Section 7.2.2–Section 7.2.6

7.2.1.1 Workflow Distribution and Parallelization

The preliminary use case analysis in Section 3 showed that some use cases include highly computing in-
tensive workflows. The traffic simulation use case has been identified as particularly amenable for optimization
through distribution. Within the project, HyperTools [1] shall be used to orchestrate these large application
flows. HyperTools is a platform used to define and execute workflow pipelines in large-scale distributed en-
vironments. Using a simple Python interface, end-users can define their application flows, which are then
executed on a HyperTools server that distributes the work onto several workers.
D2.5 - Refined Definition of Language Requirements 21

http://www.everest-h2020.eu

Figure 6 – Envisioned overall flow

As discussed in Section 4.2, a batch-enabled pipeline framework in EVEREST needs to efficiently distribute
shared data between consequent simulated iterations or reuse it across workflows.

To combine kernels executed on accelerators with conventional CPU code more easily, the Ohua compiler
framework will be used, as outlined in Section 4.2. Its DSLs will be used to describe the high-level algorithms
that forms an application. This algorithm may include functions that are offloaded as kernels to accelerators.
The compiler will transform the algorithm into a Dataflow Graph (DFG), potentially apply various graph rewrites
and produce a runtime that executes the graph, linking host machine and accelerator.

7.2.1.2 Embedded DSLs

Embedded DSLs offer great potential to simplify coding while opening up more possibilities for optimization.
Given the preliminary analysis discussed in Section 5, we will extend prior DSLs for CFD and tensor-based
computation, e.g., CFDLang [10], TeML [12], and TeIL [9]. The latter works by constructing an AST in-place in
the code. This level of control is particularly important to control memory access patterns. We aim for a clear-
cut call-like embedding that leaves us with the freedom to rearrange and possibly precompile. Additionally, in
order to disseminate our DSL and obtain feedback, we have considered building library targets that could also
be integrated with existing projects right away.

7.2.1.3 Multi-level Intermediate Representation with MLIR

One of the explicitly stated goals of the project is to achieve an interoperable tool flow. To that extent,
we will build on the steadily maturing MLIR framework [5]. MLIR is working towards compatibility with a wide
variety of existing back-ends, hinting at possible vendor support in the future. In addition to this, MLIR is also
being used for hardware specification within the EVEREST consortium and outside (e.g., CIRCT2). With MLIR,
we envision a modular compilation pipeline, leveraging the design effort of the open-source community. By
designing EVEREST dialects that the DSL abstractions map to, we can profit from the existing lower-level
dialects for linear algebra.

2https://github.com/llvm/circt

D2.5 - Refined Definition of Language Requirements 22

https://github.com/llvm/circt

http://www.everest-h2020.eu

7.2.1.4 HLS and Memory Design

HLS allows application designers to accelerate specific kernels on FPGA without having hardware design
experience. Moreover, since HLS uses high-level input languages (e.g., C/C++), the system-level integration
is simplified. In addition to the acceleration of the kernels, as stated in Section 6.2, an HLS flow allows for the
optimization of the energy consumed by the EVEREST applications. EVEREST will consider two alternative
HLS tools: Xilinx Vitis HLS and Bambu [7]. Xilinx Vitis HLS is one of most common HLS tools, composed of an
open-source frontend based on the LLVM compiler and a closed-source backend. It supports a wide range of
optimization directives and standard accelerator interfaces. Bambu is an open-source HLS tool developed by
project partners, supporting inputs written as C/C++ specifications, also annotated with OpenMP parallelization
directives, and compiler Intermediate Representations (IRs) coming from the well-known Clang/LLVM and
GCC compilers. The broad spectrum and flexibility of input formats allow the seamless integration of several
source-to-source compilers (like MLIR) and design space exploration frameworks. Bambu already includes
many hardware-oriented optimizations and interfaces with logic synthesis and verification backends, either
commercial or open-source, allowing to develop accelerators for targets different from Xilinx devices. It provides
a modular toolflow with multiple opportunities to explore new synthesis methodologies, optimizations, and
architectural features dedicated to big data applications.

Since the EVEREST applications have a strong focus on data management, EVEREST includes a specific
flow to customize the memory infrastructure around the accelerators. For doing this, we aim at extending
Mnemosyne [8], an open-source CAD prototype for the customization of memory architectures. Mnemosyne
currently supports the creation of multi-port, multi-bank private local memories that can interfaced with HLS-
generated accelerators. It will be extended with the support for more memory-related components for the
creation of “intelligent memory managers” that are optimized based on the information extracted during the
compilation flow. We are also developing Olympus, a prototype flow for automatic system-level integration of
accelerators and hardware components that directly interfaces with the high-level flow.

To accommodate for the unique DSL and characteristics of ML inference workloads, EVEREST includes
a customized flow. This new flow imports a community standard (ONNX) analyze the compute graph of the
ML model with focus on the specific performance metrics of the target platform. Afterwards, the model is
partitioned across multiple FPGA nodes, if required and the most efficient architecture is generated to meet
a users performance and resource constraints. After this Domain-Space Exploration (DSE) the generated
(partial) architectures for the compute kernels are handed over to other EVEREST tools, e.g. Bambu for kernel
synthesis and Olympus for memory management.

7.2.1.5 Run-time Auto-Tuning

Computation times in several use cases can fluctuate, based on the input data, while optimal kernel config-
uration or their versions can heavily depend on the target architecture and the available resources. To adapt to
these changes, the toolchain includes the mARGOt dynamic autotuning framework [4]. This will help to ensure
that the application meets its timing constraints.

mARGOt allows the programmer of an application to expose software-knobs, which can be used to influ-
ence the execution of the program. Using a pre-defined set of objectives (e.g., “Achieve a specific throughput
with as high accuracy as possible”), the auto-tuner will use the exposed software knobs to meet the objectives
as best as it can. In the context of kernel computations that include multiple versions, mARGOt could be used
to regulate the execution frequency of computationally intensive kernels or to trade accuracy in the results
for higher throughput, e.g., by reducing the polynomial degree of interpolation operations or the number of
samples in Montecarlo simulations.

7.2.2 Requirements: Orchestration Large Application Flows (DAGs)

The REQ2.2 has been revoked. It has showed up that intense sharing of a global state between computational
nodes has a significant negative impact on the performance; it holds even for exchanging updates only. The

D2.5 - Refined Definition of Language Requirements 23

http://www.everest-h2020.eu

distribution is going to be solved as a part of each use case as it is problem-related rather than a general
pattern.

Table 4 – Requirements for EVEREST HyperTools extensions

ID Name Description Nature Priority Comments
Relation
to global

REQ2.1
Front-end for
EVEREST
Applications

Framework on top
of HyperTools for
easy use-cases
driven
development

Tool
Must
have

Specific interface
for distribution of
tasks in traffic
simulator

GREQ1

REQ2.3

API for
communication
with
virtualization
environment

The goal is to
establish a way of
communication
between the
scheduler and the
environment to
exchange all
important
properties and
constraints.

API
Must
have

If a dynamic
reconfiguration of
the environment is
possible, the
protocol have to be
able to notify the
scheduler about
the changes

GREQ3

7.2.3 Requirements: Language and Compiler

Table 5 – Requirements for language and compiler support

ID Name Description Nature Priority Comments
Relation
to global

REQ3.1
WRF
Expression
abstraction

Language support
for expressions in
numerics (tensors,
linear algebra)

Method-
ology

Must
have

Kernel support for
WRF simulations.

GREQ1

REQ3.2
WRF Fortran
integration

Expression
abstractions
should be callable
from within Fortran
code

Method-
ology

Must
have

Either by
annotations or
inline code
modifications, user
can write
expressions within
Fortran code for
WRF

GREQ2

REQ3.3 ML integration

Framework
integration with
machine learning
frameworks

Method-
ology/
API

Should
have

Allow importing
models to hook
into the code
generation process
for EVEREST
specific
transformations

GREQ2,
GREQ4

D2.5 - Refined Definition of Language Requirements 24

http://www.everest-h2020.eu

Table 5 – Requirements for language and compiler support

ID Name Description Nature Priority Comments
Relation
to global

REQ3.4
Streaming
support

Language support
for streaming
workflows with
highly dynamic
loads

Method-
ology

Could
have

Enable compiler
reasoning for
reconfiguring
streaming oriented
computations.
Expected to
support traffic use
case. Will be
revisited as the
implementation-
progresses.

GREQ1,
GREQ4,
GREQ5

REQ3.5
Integration with
compiler
frameworks

For stability,
reusability and
extensibility,
compiler work
should build on top
of established
frameworks (e.g.,
LLVM and MLIR for
numerics, Haskell
or alike for
dataflow)

Method-
ology/
tool

Should
have

By contributing to
open source
frameworks, the
results from
EVEREST can be
used by the
community at
large. By
integrating with
these frameworks,
EVEREST can
reuse and extend
existing methods.

GREQ2,
GREQ3

REQ3.6
Compiler
transformations
for kernels

At the middle-end,
the compiler must
include a
framework for
transformations to
manipulate code
and optimize for
the EVEREST
platform

Method-
ology

Must
have

For numerics, this
should include
affine
transformations
(polyhedral) with
support for stencils
and other linear
algebra primitives

GREQ4,
GREQ5

REQ3.7
Compiler
transformations
for dataflows

For dataflow
programs, the
compiler should
include semantic
preserving rewrites
for performance
and energy
optimizations,
while retaining
determinism

Method-
ology/
tool

Could
have

This should extend
on previous work
on optimization for
dataflow programs
(including
mapping, graph
rewrites and I/O
batching)

GREQ4,
GREQ5

D2.5 - Refined Definition of Language Requirements 25

http://www.everest-h2020.eu

Table 5 – Requirements for language and compiler support

ID Name Description Nature Priority Comments
Relation
to global

REQ3.8
Multi-target
code
generation

The source to
source compiler
should generate
code for different
targets

Method-
ology/
tool

Must
have

Code written in
high-level
expression
abstractions
should translate to
pure software
(C/C++ code), or
software with
offloading to
accelerators (e.g.,
FPGA)

GREQ3

REQ3.9
Generation of
tunable
parameters

To enable
autotuning, the
compiler must
produce
descriptors of
solutions to
interface with
mARGOt.

Method-
ology/
tool

Must
have (for
adapt-
able
kernels)

From high-level
abstractions, the
compiler should
extract knobs and
parameters that
are key to
modifying
performance
and/or energy
efficiency

GREQ4,
GREQ5

REQ3.10
Interface to
HLS

The compiler
should enable a
downstream HLS
flow

Method-
ology

Must
have

The compiler must
export code (or an
intermediate
representation
thereof) to the HLS
flow, including
behavioral
descriptions of the
kernels and
configuration
information for
memory modules.
The representation
must be
synthesizable
(e.g., no dynamic
allocation of
memory).

GREQ4,
GREQ5

D2.5 - Refined Definition of Language Requirements 26

http://www.everest-h2020.eu

Table 5 – Requirements for language and compiler support

ID Name Description Nature Priority Comments
Relation
to global

REQ3.11

cFDK/OC-Accel
software
integration and
language
compatibility

The software
should be
compatible with the
cFDK/OC-Accel
API

Method-
ology/
API

Must
have

The software part
of the kernels that
are being mapped
to the FPGA
should be built in a
way that allows the
seamless
integration with the
API specifications
of cFDK (e.g.
C/C++/Python
sockets) and/or
OC-Accel
frameworks (e.g.
C/C++/libocxl)

GREQ2,
GREQ3

REQ3.12

Reasoning
about heteroge-
nenous
applications

Compiler
optimizations must
consider offloaded
kernels

Method-
ology/
tool

Must
have

The source to
source compiler
must differentiate
between offloaded
and host functions
to apply
parallelizing
transformations to
host code only.

GREQ2,
GREQ3

REQ3.13

Glue gode
generation for
heterogene-
nous
applications

Generate
interfacing code for
offloaded kernels

Method-
ology/
tool

Should
have

The source to
source compiler
must generate
code that allows
the interfacing
between host and
accelerator.

GREQ2,
GREQ3

REQ3.14

Abstractions for
offloaded
kernels

Provide
abstractions for
marking a kernel
as ‘to be offloaded’
in a high-level
algorithm

Method-
ology/
tool

Should
have

The high-level
dataflow language
provides
abstractions for
marking offloaded
kernels, easing
development of the
application.

GREQ1,
GREQ2,
GREQ3

7.2.4 Requirements: High-level Synthesis and Memory Design

D2.5 - Refined Definition of Language Requirements 27

http://www.everest-h2020.eu

Table 6 – Requirements for high-level synthesis and memory design

ID Name Description Nature Priority Comments
Relation
to global

REQ4.1 C/C++ support

C/C++ support for
HLS of
descriptions
coming from DSL
compiler

Method-
ol-
ogy/tool

Must
have

The HLS tool
should support
C/C++ code from
the use case
applications.

GREQ1,
GREQ2

REQ4.2
Bambu LLVM
IR support

Low level
integration with
DSL compiler

Method-
ol-
ogy/Tool

Must
have

The HLS tool
should support a
version of LLVM
consistent with the
one used by the
DSL compiler.

GREQ2,
GREQ4

REQ4.3
Bambu MLIR
dialect support

Direct synthesis
from MLIR dialects

Method-
ol-
ogy/tool

Can have

It may improve the
final performance
raising the
abstraction level.
At least, it should
support integration
with the affine
dialect.

GREQ2,
GREQ4

REQ4.4
HLS Verilog
output

HLS generates
RTL Verilog code
as output

Method-
ol-
ogy/tool

Must
have

The Verilog code
must be
synthesizable with
respect the
EVEREST
backend flow.

GREQ2

REQ4.5
HLS VHDL
output

HLS generates
RTL VHDL code
as output

Method-
ol-
ogy/tool

Should
have

The VHDL code
must be
synthesizable with
respect the
EVEREST
backend flow.

GREQ2

REQ4.6
Top function
specification

The code to be
synthesized must
be in a stand-alone
function which
needs to be
specified

Method-
ol-
ogy/tool

Must
have

The top function
could be specified
as annotation to
the code,
command line
parameter or
option files.

GREQ2

REQ4.7
Block level/Top
component
interfaces

The protocol to
interface with the
top module has to
be specified

Method-
ol-
ogy/tool

Must
have

The start, done,
etc. protocol of the
top component has
to be defined and
compatible with the
EVEREST
platform.

GREQ2

D2.5 - Refined Definition of Language Requirements 28

http://www.everest-h2020.eu

Table 6 – Requirements for high-level synthesis and memory design

ID Name Description Nature Priority Comments
Relation
to global

REQ4.8
Port-Level
interfaces

IO interface
protocols added to
the individual
function arguments

Method-
ol-
ogy/tool

Must
have

The definition of
the protocol should
be defined through
code annotations.

GREQ1,
GREQ2

REQ4.9

Bambu Vivado
HLS IO
interface
interoperability

Annotations
specifying the IO
protocols interface
compatibility

Method-
ol-
ogy/tool

Can
Have

Block/port level
interfaces should
use the same
annotations used
by Vivado HLS.

GREQ2

REQ4.10

Technology
options
specification

The HLS tool
accepts inputs for
optimization, clock
constraint and
resource
constraints.

Method-
ol-
ogy/tool

Must
have

These technology
constraints will
passed as input
options.

GREQ2

REQ4.11

Bambu Data
flow
annotations

HLS Data flow
support

Method-
ol-
ogy/tool

Should/have

Dataflow style
applications could
be specified by
code annotations.

GREQ1

REQ4.12

Bambu
OpenMP
support

OpenMP for
pragma synthesis
support

Method-
ol-
ogy/tool

Can have

The body of
OpenMP parallel
loop needs to be in
a separate
function.

GREQ1

REQ4.13
Bambu floating
point precision

Floating point
variables may use
a custom floating
precision data
type.

Method-
ol-
ogy/tool

Can have

Allow optimizations
of scientific and
machine learning
kernels.

GREQ1

REQ4.14

cFDK/OC-Accel
top component
interface

Interface definition
of the top
component being
intergraded with
cFDK/OC-Accel
frameworks.

Method-
ol-
ogy/tool

Must
have

The top-level
component of the
functionality that
will be mapped to
the FPGA must be
compatible with
cFDK ROLE
interface (AXIlite
AXIs, AXIm) and/or
OC-Accel Action
interface (AXIlite,
AXIm)

GREQ2

GREQ3

REQ4.15
Memory
interfaces

Standard
interfaces for
memory access

Method-
ol-
ogy/tool

Must
have

The
HLS-generated
kernels and the
memory modules
should have a
common interface
format

GREQ2

D2.5 - Refined Definition of Language Requirements 29

http://www.everest-h2020.eu

Table 6 – Requirements for high-level synthesis and memory design

ID Name Description Nature Priority Comments
Relation
to global

REQ4.16
Software-level
support

Software code to
interface with the
accelerators.

Method-
ol-
ogy/tool

Must
have

The accelerators
should be invoked
with custom OS
drivers

GREQ1

REQ4.17

Hard-
ware/software
data sharing

Data allocation
must be
compatible with
hardware memory
interfaces

Method-
ol-
ogy/tool

Must
have

The software-level
data allocation
should be
performed in a way
that hardware can
access the data

GREQ2

7.2.5 Requirements: Autotuning and Virtualized Environment

Table 7 – Requirements for the Virtualized Environment and in particular Dynamic Autotuning

ID Name Description Nature Priority Comments
Relation
to global

REQ5.1
Application
knobs

The autotuning
framework should
have access to the
application knobs

Method-
ology/
tool

Must
have

The access should
be provided by
means of the DSL
or by the
application itself.
The dynamic
autotuning
framework is only
a decision engine.

GREQ4,
GREQ5

REQ5.2
Adaptive
autotuning

The dynamic
autotuning
framework should
be able to adapt
depending on
decisions taken on
the virtualized
environment

Method-
ology/
tool

Must
have

The application
adaptation should
be triggered by
changes in the
available resources

GREQ2,
GREQ4,
GREQ5

REQ5.3
Integration with
runtime

The dynamic
autotuning
framework should
be able to interact
with the virtualized
environment

Method-
ology/
tool

Could
have

Given the
knowledge of the
application, the
dynamic
adaptation
framework can
provide hints to the
virtual manager to
steer decisions

GREQ2

D2.5 - Refined Definition of Language Requirements 30

http://www.everest-h2020.eu

Table 7 – Requirements for the Virtualized Environment and in particular Dynamic Autotuning

ID Name Description Nature Priority Comments
Relation
to global

REQ5.4
Autotuning and
optimization

The dynamic
autotuning
framework should
manage the
software knobs
exposed by the
application by
autonomously
selecting a
near-optimal
configuration

Method-
ology/
tool

Must
have

The adaptation
should be triggered
automatically and
not by hand

GREQ4,
GREQ5

REQ5.5
Variant
selection

The dynamic
autotuning
framework should
be able to manage
code variants
selection

Method-
ology/
tool

Must
have

Code variants
should be
managed as for
the parameters of
the application

GREQ4,
GREQ5

REQ5.6
Design and
deploy-time
information

The dynamic
autotuning
framework should
be able to take a
decision based on
knowledge
collected at design
time or at deploy
time

Method-
ology/
tool

Must
have

The knowledge for
taking the decision
can be directly
injected by some
analysis of the
compilation flow or
extracted by an
on-line profiling of
the kernel

GREQ4,
GREQ5

REQ5.7
Language
support

The dynamic
autotuner requires
C++ applications

Method-
ology/
tool

Must
have

mARGOt is a C++
library to be linked
with the application

GREQ2

REQ5.8 HW Knobs

The dynamic
autotuning
framework should
have access to HW
knobs

Method-
ology/
tool

Could
have

In case of a
configurable
accellerator that
can be dynamically
configured, the
knobs have to be
exposed to the SW
layer.

GREQ4,
GREQ5

D2.5 - Refined Definition of Language Requirements 31

http://www.everest-h2020.eu

Table 7 – Requirements for the Virtualized Environment and in particular Dynamic Autotuning

ID Name Description Nature Priority Comments
Relation
to global

REQ5.9 HW monitors

HW accelerators
should expose a
monitor interface to
the run-time to
trigger dynamic
decisions

Method-
ology/
tool

Could
have

Monitoring
information should
be exposed to the
SW and will be
used by the
run-time
environment
(dynamic
autotuning and
virtualize
environment) to
take dynamic
decisions.

GREQ4,
GREQ5

REQ5.10
Execution

The run-time
environment
requires a CPU
where to execute

Method-
ology/
tool

Must
have

The runitme
environment is
composed by
software modules
that requires a
core where to
execute. Pure HW
environments are
not considered.

REQ5.11
Virtual
Environment

Virtualization
environment has to
enable execution
of applications on
different hardware
in terms of
processor and
accelerators

Method-
ology /
tool

Must
have

The EVEREST
virtualization
environment
targets different
hardware
accelerators and
CPU architectures

GREQ2,
GREQ4,
GREQ5

7.2.6 Requirements: Use Case Providers

As mentioned in Section 5, one of the most important factors for pursuing specialized language support is
enabling the encoding of expert knowledge. Our investigation into WRF and experience with past projects
already show a variety of ways how expert knowledge can be leveraged for high-level optimizations. This
implies that a close cooperation with domain experts is key for a successful language design. While we can
make solid assumptions for many language features based on the observations we made for the kernels,
such as the focus on linear algebra, much falls outside the scope of language and compiler development.
Mappings and identities pertaining to the physical or application-specific interpretation are fundamentally the
responsibility of the use case providers. It is them who have the authority over these tacit requirements placed
on the compiler development.

At the same time, the success of the language design relies on the ability to encode and exploit them, which
means that our development processes are tied together. While we have started this during the creation of
this document, both the language design and the use cases are a moving target. We believe the requirements
specified here are a great starting point for continuous collaborative development, as all sides continue to probe
their design space.

D2.5 - Refined Definition of Language Requirements 32

http://www.everest-h2020.eu

8 Conclusions

In this deliverable we have discussed elements in the use cases that can benefit from language support within
the EVERET SDK. Together with the appropriate tooling it will help programmers to transparently leverage the
efficiency of the EVEREST heterogeneous platform. After reviewing the use cases, we discussed consider-
ations for the SDK design and the hardware design of the EVEREST platform. This deliverable closed with
a detailed analysis of the requirements of the use cases, and derived specific requirements for the individual
components of the EVEREST SDK, i.e., orchestration of workflows, domain-specific languages and compiler,
high-level synthesis and memory design, and autotuning and virtualized environment.

The analysis presented here reflects a highly heterogeneous use case landscape, combining different
computational patterns, input languages, and build systems. Compared to Deliverable D2.2, this deliverable
contains a complete specification of the use cases and a more detailed analysis of critical components of the
use cases that require acceleration via the EVEREST SDK. Machine learning algorithms, exploited by traffic
management, energy, and air quality pilots, are well defined and can be readily supported by existing frame-
works. Important in the SDK will be the support of interoperability (reading in and processing models exported
from different machine learning frameworks), interoperability with other application phases, and support for
distributed execution on FPGA-based systems. Apart from machine learning, we observed two different major
workload types, namely HPC (e.g., weather simulations) and coordination of loosely coupled tasks (e.g., data
acquisition and data assimilation tasks). A special focus will be set in heavy computational workloads, to pro-
vide language and compiler support, so as to transparently accelerate portions of HPC applications. This will
be enabled by tailor-made domain-specific abstractions coupled with runtime components which enables us to
achieve high interoperability and retargetability at a low cost to users of existing code bases. For task coordi-
nation, we consider language support for implicit definition of task or dataflow graphs. This will be driven by
the traffic use case. The availability of a powerful HPC facility, including FPGA resources, is strictly necessary
for the execution of the weather simulations in support of energy and air quality machine learning algorithms.

This document serves as guide for the work in work packages WP4 and WP5.

D2.5 - Refined Definition of Language Requirements 33

http://www.everest-h2020.eu

References

[1] Vojtěch Cima, Stanislav Böhm, Jan Martinovič, Jiří Dvorskỳ, Kateřina Janurová, Tom Vander Aa,
Thomas J Ashby, and Vladimir Chupakhin. Hyperloom: A platform for defining and executing scientific
pipelines in distributed environments. In Proceedings of the 9th Workshop and 7th Workshop on Parallel
Programming and RunTime Management Techniques for Manycore Architectures and Design Tools and
Architectures for Multicore Embedded Computing Platforms, pages 1–6, 2018.

[2] Sebastian Ertel, Justus Adam, and Jeronimo Castrillon. Supporting fine-grained dataflow parallelism in big
data systems. In Proceedings of the 9th International Workshop on Programming Models and Applications
for Multicores and Manycores (PMAM), PMAM’18, pages 41–50, New York, NY, USA, February 2018.
ACM.

[3] Sebastian Ertel, Christof Fetzer, and Pascal Felber. Ohua: Implicit dataflow programming for concurrent
systems. In Proceedings of the Principles and Practices of Programming on The Java Platform, pages
51–64. 2015.

[4] Davide Gadioli, Emanuele Vitali, Gianluca Palermo, and Cristina Silvano. Margot: a dynamic autotuning
framework for self-aware approximate computing. IEEE transactions on computers, 68(5):713–728, 2018.

[5] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis, Jacques Pienaar, River Riddle,
Tatiana Shpeisman, Nicolas Vasilache, and Oleksandr Zinenko. Mlir: A compiler infrastructure for the end
of moore’s law. arXiv preprint arXiv:2002.11054, 2020.

[6] OpenCAPI Consortium. A statement from the opencapi consortium leadership, 2022. https://opencapi.
org, visited on 2023-01-23.

[7] Christian Pilato and Fabrizio Ferrandi. Bambu: A modular framework for the high level synthesis of
memory-intensive applications. In 2013 23rd International conference on field programmable logic and
applications, pages 1–4. IEEE, 2013.

[8] Christian Pilato, Paolo Mantovani, Giuseppe Di Guglielmo, and Luca P. Carloni. System-level optimization
of accelerator local memory for heterogeneous systems-on-chip. IEEE Transactions on CAD of Integrated
Circuits and Systems, 36(3):435–448, 2017.

[9] Norman A. Rink and Jeronimo Castrillon. TeIL: a type-safe imperative Tensor Intermediate Language. In
Proceedings of the 6th ACM SIGPLAN International Workshop on Libraries, Languages, and Compilers
for Array Programming (ARRAY), ARRAY 2019, pages 57–68, New York, NY, USA, June 2019. ACM.

[10] Norman A. Rink, Immo Huismann, Adilla Susungi, Jeronimo Castrillon, Jörg Stiller, Jochen Fröhlich, and
Claude Tadonki. Cfdlang: High-level code generation for high-order methods in fluid dynamics. In Pro-
ceedings of the 3rd International Workshop on Real World Domain Specific Languages (RWDSL 2018),
RWDSL2018, pages 5:1–5:10, New York, NY, USA, February 2018. ACM.

[11] William C Skamarock, Joseph B Klemp, Jimy Dudhia, David O Gill, Zhiquan Liu, Judith Berner, Wei
Wang, Jordan G Powers, Michael G Duda, Dale M Barker, et al. A description of the advanced research
wrf model version 4. National Center for Atmospheric Research: Boulder, CO, USA, 145:145, 2019.

[12] Adilla Susungi, Norman A Rink, Albert Cohen, Jeronimo Castrillon, and Claude Tadonki. Meta-
programming for cross-domain tensor optimizations. ACM SIGPLAN Notices, 53(9):79–92, 2018.

D2.5 - Refined Definition of Language Requirements 34

https://opencapi.org
https://opencapi.org

	Executive Summary
	Structure of this Document
	Related Documents

	Introduction
	Use Case Analysis
	Air Quality Monitoring
	Renewable-Energy Prediction
	Traffic Modelling

	Workflow Distribution and Parallelization
	Problem Description
	Requirements

	Kernel Computations
	Problem Description
	Requirements
	Contextual Requirements
	Application Requirements
	Requirements for ML Inference

	Challenges

	Hardware Design Considerations
	HLS Problem Description
	HLS Challenges
	fpga-based Target Platform

	Use Case and Framework Requirements
	Summary: Properties of the Use Cases for Programming Support
	Requirements
	Overall Envisioned Flow
	Requirements: Orchestration Large Application Flows (DAGs)
	Requirements: Language and Compiler
	Requirements: High-level Synthesis and Memory Design
	Requirements: Autotuning and Virtualized Environment
	Requirements: Use Case Providers

	Conclusions
	References

