
EVEREST+DAPHNE Workshop @ HiPEAC 2024 – January 19, 2024

CHRISTIAN PILATO

Associate Professor (Politecnico di Milano) & EVEREST Scientific Coordinator

christian.pilato@polimi.it

A System Development Kit for Big Data Applications 
on FPGA-based Clusters: The EVEREST Approach



The EVEREST Project

2

Big data applications with 
heterogeneous data sources

FPGA-based architectures to 
accelerate selected kernels

● App designers are not FPGA experts
● Hardware accelerators require many 

optimizations
● Target nodes can have different 

characteristics

Improve applications’ results

Increase quality of accelerators

Increase designers’ productivity
Compilation Runtime

How to optimize big data applications on FPGA-based architectures?

Unified hardware generation flow
(high-level synthesis)

Generation of variants

Dynamic adaptation to variants

Virtualization of resources

Multi-node support

H2020 Project – 10 partners, 6 countries

Project Coordinator: Christoph Hagleitner, IBM Research Europe

Scientific Coordinator: Christian Pilato, Politecnico di Milano

Budget: ~5M€

Start date: October 1, 2020 (36+6 months)



EVEREST Use Cases

3

Traffic modeling for intelligent transportation

Weather prediction modelling 
(WRF)

Renewable energy production prediction

Air-quality monitoring of industrial sites

Accelerated computationally-intensive kernels Machine-learning kernels+

★ Improve quality of the predictions

★ Accelerate kernels to execute more tests
★ Improve the response time of predictions

★ Improve the overall performance of traffic simulation



EVEREST Approach

4

Big data applications with 
heterogeneous data sources

FPGA-based architectures to 
accelerate selected kernels

SDK

What are the relevant requirements for data, languages and applications?

How to design data-driven policies for computation, communication, and storage?

How to create FPGA accelerators and associated binaries?

How to manage the system at runtime?

How to evaluate the results?

How to disseminate and exploit the results?

CPU-based infrastructure

Two FPGA-based clusters
+

Open-source framework to 
support the optimization of 

selected workflow tasks

Three use cases



EVEREST System Development Kit (SDK)

(and more...)

Processing State

0DFKLQH�/HDUQLQJ�)URQWHQG¬

7KH�2SHQ�&,0�&RPSLOHU¬

&,0�5XQWLPH�/LEUDU\

+DUGZDUH
&38

System Development Kit (SDK): Collection of languages, tools, and methods to 
simplify the deployment and optimize the execution of large use cases in 
heterogeneous systems

Different input flows 
starting from different input languages

Support for multiple target boards
(and possibly other targets)

📌 Simplified workflow definition and automatic deployment, and management
📌 Compilation framework based on MLIR to unify the input languages
📌 High-level synthesis and hardware generation flow to automatically create optimized architectures 

📌 Hardware and software variants to match architecture and application features
📌 Virtualized environment and autotuning for runtime adaptation

📌 Built on top of state-of-the-art frameworks and commercial toolchains for FPGA synthesis

5



RuntimeCompilation

EVEREST SDK Overview

6

Collection of tools with common interface to interact with each other, 
exchange information, and produce output files

basecamp

Application Description

Deep learning

General Tensor 
Kernels

Dataflow
Pipelines

Integration & Assembly

EVP

Deployment & Runtime Management

HLS-based Synthesis

Bambu

obj
obj

DOSA

EKL

Ohua

Olympus

EVKIT

EFSM

Variant info

bitstream mARGOt



basecamp – The start of all EVEREST endeavors

7

basecamp

• Single Entry for the EVEREST SDK → basecamp
• Wraps components together
• Modular dependencies for simplified installation

• Single Exit → EVEREST Runtime



EVEREST Compilation Framework

8

The EVEREST Compilation Framework is based on MLIR and 
leverages HLS to generate FPGA accelerators:
l Supports different input flows with domain-specific languages for tensor

expressions (EKL), dataflow descriptions (Ohua), and ML-based
applications (DOSA) thanks to MLIR abstractions

l Unified MLIR-based compiler (EVP) coordinates kernel- and system-
level optimizations

l Uses academic (Bambu) and commercial (Vitis HLS) tools for high-
level synthesis to obtain hardware descriptions

l System-level generation (Olympus) aims at optimizing the FPGA 
architecture with an efficient implementation of multiple parallel units



Multi-Level Intermediate Representation (MLIR)

9

Novel compiler infrastructure centered on reuse and extensibility
• Becoming popular as a framework for domain-specific language (DSL) compilers for 

heterogeneous systems

MLIR is a collection of dialects, each representing different layers of 
abstraction through various operators, types, and attributes 
• Custom dialects can easily be added for domain-specific problems while reusing 

existing infrastructure
• Dialects can be integrated into larger language stacks via lowering, transforming a 

more abstract dialect into a more concrete one



MLIR-based Compilation Flow

Annotated C code 
/ LLVM IR / MLIR

HLS 
(Vitis/Bambu)

Arch. Info

Mem. Gen. 
(Mnemosyne)IP config.

System Integration
(Olympus)

DSL Src-to-Src (MLIR)
Compiler+DSE

Security/data 
requirementsMem. Info

Security/data 
requirements

Memory 
access patternsIP requirements

Synthesis Tools

ML Framework

Possibility to target different 
architectures

Memory architecture is 
decoupled from kernel HLS

Use of high-level synthesis for the 
automatic generation of both acceleration 
kernels and system architectures

10

Convergence of multiple input flows

System-Level 
MLIR Compiler



Olympus – System Generation Flow

11

Automatic system generation for FPGA accelerators

Inputs
★ DFG description (MLIR)
★ Characteristics of the target node(s)
★ Kernel descriptions

Outputs
★ Synthesizable C++ code
★ Host library implementation
★ System configuration file

“Intelligent” policies to coordinate and/or protect data transfers

Parallel 
computing units



Olympus Optimizations

12

Double buffering
★ To hide latency of host-FPGA data transfers

Bus optimization and data interleaving
★ To maximize bandwidth (e.g., 256-bit AXI channels)

Dataflow execution model
★ To enable kernel pipelining 

automatic batch sizing

algorithms for efficient 
data layout on the bus

automatic (pre-HLS) 
code transformations

S. Soldavini, D. Sciuto, C. Pilato: Iris: Automatic Generation of Efficient Data 
Layouts for High Bandwidth Utilization. ASP-DAC (2023)



EVEREST Runtime Environment

13

The EVEREST Runtime Environment supports the selection of “variants” at runtime
and in a virtualized manner:
l SDK Compilation Framework provides

the accelerator variants – bitstream 
with metadata (e.g., number of 
clients-VMs, type of acceleration, etc)

l Virtualization support (EFSM) attaches
them to newly-created VM at runtime
and manage dynamic reallocation

l Dynamic adaptation and autotuning
(mARGOt) take decisions depending
on the execution status bitstream bitstream

bitstream

bitstream



EVKIT

14

Distributed runtime library developed in EVEREST

• Simple frontend API available in Python and Rust

• Distributes and load-balances embarrassingly-parallel computations 
to a set of cluster nodes

• Supports CPU and FPGA execution of kernels

• Can cooperate with mARGOt to choose 
CPU/FPGA kernel variants or modify their 
parametrizations



EVEREST Runtime Features

15

• Possibility of reconfiguring 
hardware function assignment
according to application feedback

• Unique application instance with or 
without hardware function

• Dynamic switching needed for the 
hardware functions 

• Feedback from the application to 
permit the dynamic hardware function 
allocation

if is_Hw_F_available():
Hw_F(x)

else:
Sw_F(x)

VM
Manager/Controller

FPGA

mARGOt mARGOt
if is_Hw_F_available():

Hw_F(x)
else:

Sw_F(x)

Virtualization 
Extension



Conclusions

16

The EVEREST SDK is a collection of tools to simplify the deployment and
optimize the execution of selected computational kernels on FPGA

★ Combination of compilation and runtime methods to match the execution of the applications 
and the characteristics of the underlying hardware

The EVEREST Compilation Framework is based on HLS to optimize the 
generation of hardware descriptions while reasoning at higher levels of abstractions

★ Highly based on MLIR infrastructure to unify the input flows and the optimizations
★ Possibility to combine different HLS tools in the same hardware architecture

The EVEREST Runtime Environment uses hardware/software variants in a 
virtualized environment to adapt the computation

★ Support for CPU/FPGA execution of kernels
★ Load-balancing methods among cluster nodes



This project has received funding from the European 
Union’s Horizon 2020 research and innovation 
programme under grant agreement No 957269

Thanks!


