Near-Memory Hardware Specialization for Fast and Efficient Sparse Processing

Zhiru Zhang School of ECE, Cornell University

DATA-DREAM Workshop @ DATE, 3/18/2022

The Game Changing Potential of Sparsity

Opportunity: Sparsity reduces the amount of data that needs to be processed by orders of magnitude

Challenge: Realistic sparse workloads are highly memory bound, exhibiting varying sparsity and irregular patterns in compute & data access

Our Approach to Efficient Sparse Processing

- Near-memory hardware acceleration for common sparse linear algebra operations (aka 'motifs') by
 - exploiting high-bandwidth memories (HBMs)
 - co-design of sparse format and accelerator architectures
 - prototyping on FPGAs with high-level synthesis (HLS)

Our Recent Work on Efficient Sparse Accelerators

Tensaurus: Sparse-Dense Matrix/Tensor Xcel [HPCA'20]

MatRaptor: Sparse-Sparse MatMul Xcel [MICRO'20]

Manycore for Dense/Sparse Tensor Processing [TCAD'21]

FPGA-based Sparse Accelerators [ICCAD'21, FPGA'22]

Focus of this talk

HiSparse: SpMV Acceleration on HBM-Equipped FPGAs

GraphLily: FPGA-Based Graph Linear Algebra Overlay

HiSparse: SpMV Acceleration on HBM-Equipped FPGAs

Int'l Symposium on Field-Programmable Gate Arrays (FPGA 2022) in collab. with: Yixiao Du, Yuwei Hu

github.com/cornell-zhang/HiSparse

GraphLily: FPGA-Based Graph Linear Algebra Overlay

Characteristics of SpMV

- Low compute to memory access ratio (or operational intensity)
- Irregular data access patterns
- Carried data dependencies

Memory (bandwidth) bound

Target Acceleration Platform

 Previous work targeted systems using low-bandwidth DDRs ^[1-4]

- HBM-equipped (multi-die) FPGAs
 - Much higher bandwidth available with concurrent accesses to multiple channels
 - Important to avoid channel conflicts to achieve high bandwidth utilization

- [2] J. Fowers, et al. A high memory bandwidth FPGA accelerator for sparse matrix-vector multiplication, FCCM'14
- [3] T. Geng, et al. AWB-GCN: A graph convolutional network accelerator with runtime workload balancing. MICRO'20
- [4] X. Chen, et al. ThunderGP: HLS-based graph processing framework on FPGAs, FPGA'21

^[1] S. Kestur, et al. Towards a universal FPGA matrix-vector multiplication architecture, FCCM'12

Sparse Matrix Formats

- Accelerator-Friendly Format (CPSR)
 - Streaming (vectorized) access
 - No channel conflicts

HiSparse Accelerator Architecture

- Parallel processing engines (PEs) grouped in clusters
 - Each cluster accesses a dedicated HBM channel
 - Multiple PEs per a cluster for vectorized HBM access
 - Each cluster requires on-chip buffers for storing dense vector and results

On-Chip Buffering of the Dense Vector

- Option 1: Duplicating dense vector to each PE
 - High on-chip bandwidth
 - High demand for on-chip memory

- Option 2: Sharing dense vector among PEs
 - Efficient use of on-chip memory
 - Bank conflicts

A shuffle unit is required to manage data requests and bank conflicts

Handling Bank Conflicts in HLS

HLS assumes the worst-case traffic pattern: N input lanes \rightarrow Initiation Interval (II) = N

```
/* shuffle unit */
/* N is the number of input lanes
  M is the number of output lanes
  ARB DEPTH is the pipeline depth for the arbiter */
while (!exit) {
# pragma HLS pipeline // II will be 1
# pragma HLS dependence variable=granted inter RAW \
true distance=ARB DEPTH
# pragma HLS dependence variable=arbiter out inter \
RAW true distance=ARB DEPTH
    for (int i = 0; i < N; i ++) {
# pragma HLS unroll
     if (granted[i]) arbiter in[i] = in lane[i].read();
      else arbiter in[i] = arbiter out[i];
    arbiter(arbiter in, sel, granted, arbiter out);
    for (int i = 0; i < M; i ++) {</pre>
# pragma HLS unroll
     if (granted[sel[i]])
          out lane[i].write(arbiter out[sel[i]]);
    }
```

Explicit arbitration & re-sending: II = 1

Handling Carried Dependencies in HLS

Naïve Implementation

```
/* carried dependency counter-example */
// X is the read latency; Y is the write latency
while (!exit) {
    # pragma HLS pipeline // II will be X + Y
        // fetch a payload
        payload = in_lane.read();
        // multiply accumulation
        result_buffer[payload.row_index]
        += payload.mat_value * payload.vec_value;
}
```

- Low throughput with a large II
- Challenging to implement data forwarding in untimed HLS
 - Pipeline registers are not visible at the source level

Optimized Implementation

```
/* data forwarding */
// X is the read latency; Y is the write latency
/* in-flight write queue (IFWQ) is
   a shift register of depth (X + Y) */
while (!exit) {
# pragma HLS pipeline // II will be 1
# pragma HLS dependence variable=result buffer false
   // fetch a payload
    payload = in lane.read();
   // read buffer
    old val = result buffer[payload.row index];
   // data forwarding
   val = detect raw(IFWQ, payload.row index) ?
          IFWQ.find val(payload.row index)] : old val;
   // multiply and add
    new val = val
            + payload.mat value * payload.vec value;
    // write buffer
    result buffer[payload.row index] = new val;
    // update IFWQ (shift register)
    IFWQ.update(new val, payload.row index)
```

- IFWQ stores writes from past iterations
 - Behaves like pipeline registers

Implementation on Xilinx (AMD) Alveo U280 FPGA

- 16 HBM channels for the sparse matrix
- 2 HBM channels for input/result vector
- Total bandwidth (of 18 channels): 258 GB/s
- 4 MB result buffer (256 KB x 16), 128 KB vector buffer (16 copies)
- 8 process engines per cluster, 128 PEs in total

Implementation on Xilinx (AMD) Alveo U280

- Completely in HLS
- Frequency: 237 MHz with floorplanning
- Resource Utilization:

LUT	FF	DSP	BRAM	URAM
544K (47.3%)	528K (22.7%)	688 (7.63%)	128 (7.22%)	512 (53.3%)

HiSparse vs. CPU & GPU Implementations (1)

CPU baseline

GPU baseline

– Intel MKL (32 threads)

- NVIDIA cuSPARSE
- Intel Xeon Gold 6242 with 282 GB/s bandwidth
 GTX 1080 Ti with 484 GB/s bandwidth

Throughput (GOPS)							
Dataset	MKL	cuSPARSE	E <u>HiSparse</u>	Dataset	MKL	cuSPARSE	<u>HiSparse</u>
transfomer-50	5.9	26.9	21.9	mouse-gene	12.1	29.0	27.2
transfomer-60	5.6	21.5	18.9	googlepuls	5.1	27.2	21.2
transfomer-70	5.2	17.7	16.5	ogbl-ppa	4.1	18.0	24.4
transfomer-80	4.1	19.4	14.8	hollywood	4.4	22.6	24.9
transfomer-90	2.3	13.6	9.7	pokec	3.0	10.5	11.2
transfomer-95	1.2	10.7	5.7	ogbn-products	3.1	5.0	20.6
Geomean	Mł	KL: 4.1	cuS	PARSE: 16.8		HiSparse: 16	.7

4.1x faster than MKL; (nearly) the same performance as cuSPARSE

HiSparse vs. CPU & GPU Implementations (2)

- CPU baseline
 - Intel MKL (32 threads)

- GPU baseline
 - NVIDIA cuSPARSE
- Intel Xeon Gold 6242 with 282 GB/s bandwidth
 GTX 1080 Ti with 484 GB/s bandwidth

Bandwidth Efficiency (MOPS/GBPS)					
Geomean	MKL: 14.0	cuSPARSE: 33.2	<u>HiSparse</u> : 64.5		

4.6x higher than MKL; 1.9x higher than cuSPARSE

	MKL	cuSPARSE	<u>HiSparse</u>
Power (W)	276	153	45
Energy Efficiency (GOPS/W)	0.01	0.10	0.37

37x more efficient than MKL; 3.7x more efficient than cuSPARSE

HiSparse vs. Existing FPGA Accelerators

- ThunderGP^[1]
 - Xilinx (AMD) Alveo U250 with 77 GB/s bandwidth (4 DDR), 250 MHz
- Vitis Sparse Library
 - Xilinx (AMD) Alveo U280 with 268 GB/s bandwidth (16 HBM + 2 DDR), 220 MHz

	ThunderGP [#]	<u>HiSparse</u> #	Vitis Sparse Lib*	HiSparse*
Throughput (GOPS)	8.9	19.6	9.4	12.6
Bandwidth efficiency (MOPS/GBPS)	116.0	76.3	34.9	48.9

*On mouse_gene, hollywood, and pokec

* On Transformer datasets (current Vitis lib cannot handle large matrices with size beyond 100Kx100K)

2.2x faster than ThunderGP; 1.4x faster than Vitis Sparse Library

[1] Xinyu Chen, et al. ThunderGP: HLS-based graph processing framework on FPGAs, FPGA 2021.

More Recent Results

- HiSparse with 22 HBM channels
 - 20 channels for matrix, 2 channels for input/output vector
 - 231 MHz, 315 GB/s (1.22x) bandwidth

	LUT	FF	DSP	BRAM	URAM
18 channel	544K (47.3%)	528K (22.7%)	688 (7.63%)	128 (7.22%)	512 (53.3%)
22 channel	677K (59.4%)	653K (28.6%)	860 (9.53%)	157 (8.86%)	640 (66.7%)

Dataset	18 channels (ms)	22 channels (ms)	Speedup
pokec	5.41	4.73	1.14x
ogbn-products	12.87	9.32	1.38x
orkut	21.09	15.61	1.35x
LiveJournal	22.30	17.97	1.24x
road_usa	343.36	282.80	1.21x

HiSparse: SpMV Acceleration on HBM-Equipped FPGAs

Int'l Symposium on Field-Programmable Gate Arrays (FPGA 2022) in collab. with: Yixiao Du, Yuwei Hu

GraphLily: FPGA-Based Graph Linear Algebra Overlay

Int'l Conference On Computer Aided Design (ICCAD 2021) in collab. with: Yuwei Hu, Yixiao Du, Ecenur Ustun

github.com/cornell-zhang/GraphLily

Graph Processing on FPGAs

- Prior efforts on FPGA-based graph processing (e.g., GraphGen^[1], ForeGraph^[2], HitGraph^[3], ThunderGP^[4])
 - Exploit fine-grained parallelism and custom memory hierarchy
 - Most target systems using low-bandwidth DDRs
- Key limitation a separate bitstream is required for each graph algorithm
 - Generating a new bitstream takes hours-days
 - The reconfiguration cost at run time is nontrivial

^[1] E. Nurvitadhi, et al, An FPGA Framework for Vertex-Centric Graph Computation, FCCM'14

^[2] G. Dai, et al. ForeGraph: Exploring Large-scale Graph Processing on Multi-FPGA Architecture, FPGA'17

^[3] S. Zhou, et al. HitGraph: High-throughput Graph Processing Framework on FPGA, TPDS'19

^[4] X. Chen, et al. ThunderGP: HLS-based Graph Processing Framework on FPGAs, FPGA'21

Domain-Specific Overlay for Graph Processing

GraphLily – the first FPGA overlay for graph linear algebra

- A unified & versatile accelerator that supports multiple graph algorithms
- Effectively utilizing HBM bandwidth by cooptimizing data layout and accelerator architecture
- Easily porting graph algorithms from CPUs/GPUs to FPGAs with a middleware

Graph algorithms (e.g. BFS, PageRank, SSSP) expressed as traversals

GraphBLAS: mapping graph traversals to Adj. matrix "×" frontier vector

Middleware: kernel scheduling & module-level APIs

Sparse Linear Algebra Formulation of Graph Algorithms

Breadth-first search (BFS)

BFS in Matrix View

New Frontier: C, E, F, H

(Adjacency matrix * frontier vector)

SpMV vs. SpMSpV

SpMV (inner product)

- More work
- Regular memory accesses
- Easy to parallelize

SpMSpV (outer product)

- Less work
- Less regular memory accesses
- More challenging to parallelize due to synchronization on output updates

Use SpMSpV when the frontier set is small (aka direction-optimizing heuristic)

The GraphBLAS Abstraction

- GraphBLAS expresses graph algorithms in terms of sparse linear algebra primitives
 - Generalized matrix/vector operations over semirings

	Binary op	Reduction op	Application
Arithmetic semiring	mul	add	PageRank
Boolean semiring	logical and	logical or	BFS
Tropical semiring	add	min	SSSP

- Existing implementations target CPUs ^{[1][2]} and GPUs ^[3]
- GraphLily is the first work that supports GraphBLAS on FPGAs

^[1] SuiteSparse: https://github.com/DrTimothyAldenDavis/SuiteSparse

^[2] Graphblas template library: https://github.com/cmu-sei/gbtl

^[3] GraphBLAST: <u>https://github.com/gunrock/graphblast</u>

Programming Interface

 GraphLily provides middleware API that helps users port GraphBLAST code FPGAs

```
DenseVec bfs(SparseMatrix Adj, int src, int num iter) {
  // Initialize the frontier vector
  SparseVec frontier = {src};
  // Initialize the distance vector
  DenseVec distance(Adj.num rows);
  for (int i=0; i<Adj.num rows; i++) {distance[i] = 0;}</pre>
  distance[src] = 0;
  for (int iter=1; iter<=num iter; iter++) {</pre>
    // Perform graph traversal using SpMV
    frontier = graphblast::SpMV<BoolSemiring>(Adj,
                                               frontier,
                                               distance);
    // Update distance
    graphblast::Assign(distance, frontier, iter);
  return distance;
}
         BFS in GraphBLAST
```

```
class BFS : graphlily::ModuleCollection {
 // Specify the modules and load the bitstream
 void init() {
   this->SpMV = graphlily::SpMVModule<BoolSemiring>;
   this->Assign = graphlily::AssignModule;
    load bitstream("graphlily overlay.bitstream");
 }
  // Format the matrix and send it to the device
 void prepare matrix(SparseMatrix Adj) {
   AdjCPSR = this->SpMV.format(Adj);
    this->SpMV.to hbm(AdjCPSR);
  // Compute BFS by scheduling the modules
 // Same logic as in GraphBLAST
  DenseVec run(int src, int num iter) {
    . . .
};
        BFS in GraphLily
```

Resource Utilization, Layout, and Frequency

- Implementation on a Xilinx Alveo U280 FPGA using Vitis HLS
 - 19 HBM channels + DDR: Total bandwidth is 285 GB/s
 - Frequency is 165 MHz (due to congestion)
 - Integration of HiSparse is underway

	LUT	FF	DSP	BRAM	URAM
BFS-only	335K	426K	179	393	512
	(30.0%)	(18.4%)	(2.0%)	(22.9%)	(53.3%)
Overlay	399K	467K	723	393	512
	(35.8%)	(20.2%)	(8.0%)	(22.9%)	(53.3%)

GraphLily overlay is resource efficient

Layout challenges: (1) slow cross-die communications (2) congestion around memory controllers in die 0

GraphLily vs. CPU & GPU Implementations

Dataset	Graphlt	GraphBLAST	GraphLily
googleplus	3452	7635	6252
ogbl-ppa	3622	6274	7092
hollywood	2663	8127	7471
pokec	1793	3522	2933
ogbn-products	1093	2536	5290
orkut	2151	4181	5940
Geometric mean	2280	4940	5591

PageRank Throughput (MTEPS)

Throughput: 2.5× higher than GraphIt on CPU;
 1.1× higher than GraphBLAST on GPU

GraphLily vs. Single-Purpose FPGA Accelerators

Throughput in million traversed edges per second (MTEPS)						
Algorithm	Dataset	System	Throughput	Speedup		
			(MTEPS)			
BES	bollywood	ThunderGP	5960	1.0~		
DF3	nonywood	GraphLily	6863	1.2*		
DegeDegk	bollywood	ThunderGP	4073	1 0,~		
	nonywood	GraphLily	7471	1.0*		
Fayenank	rmat21	HitGraph	3410	1.4×		
		GraphLily	4653			
SSSP -	bollywood	ThunderGP	4909	1.0~		
	nonywood	GraphLily	9340	1.9×		
	rmat01	HitGraph	4304	1 2 2		
	malzi	GraphLily	5646	1.5×		

1.3× to 1.4× higher throughput than (simulated results of) HitGraph;
 1.2× to 1.9× higher than ThunderGP

Conclusions

- Near-memory hardware specialization is a promising way for efficient sparse processing
 - Customized memory hierarchy & data layout \rightarrow higher bandwidth utilization
- HBM-enabled FPGAs offer a flexible platform for implementing application- or domainspecific sparse accelerators
 - HiSparse & GraphLily can serve as useful references
- A plethora of challenges / opportunities remain:
 - HLS for bandwidth-demanding accelerators
 - Balance between efficiency and programmability
 - End-to-end acceleration of mixed sparse-dense workloads

...